Processing math: 100%
Physics Resonance: Problem set 30 -->

Notice

Wednesday, 23 November 2016

Problem set 30

  1. A particle is confined to the region x \ge 0 by a potential which increases linearly as u(x) = u_0x. The mean position of the particle at temperature T is
    1. \frac{k_BT}{u_0}
    2. \frac{(k_BT)^2}{u_0}
    3. \sqrt{\frac{k_BT}{u_0}}
    4. u_0k_BT
  2. A plane electromagnetic wave is propagating in a loss-less dielectric. The electric field is given by {\scriptstyle\vec E(x,y,z,t)=E_0(\hat x+A\hat z)\exp{\left[ik_0\left\{-ct+\left(x+\sqrt{3}z\right)\right\}\right]}}
    where c is the speed of light in vacuum, E_0 , A and k_0 are constants and \hat x and \hat z are unit vectors along the x- and z-, axes. The relative dielectric constant of the medium, \epsilon_r and the constant A are
    1. \epsilon_r=4 and A=-\frac{1}{\sqrt{3}}
    2. \epsilon_r=4 and A=+\frac{1}{\sqrt{3}}
    3. \epsilon_r=4 and A=\sqrt{3}
    4. \epsilon_r=4 and A=-\sqrt{3}
  3. In a system consisting of two spin-\frac{1}{2} particles labeled 1 and 2, let \vec S^{(1)} = \frac{\hbar}{2}\vec\sigma^{(1)} and \vec S^{(2)} = \frac{\hbar}{2}\vec\sigma^{(2)} denote the corresponding spin operators. Here \vec\sigma\equiv (\sigma_x ,\sigma_y ,\sigma_z) and \sigma_x ,\sigma_y ,\sigma_z are the three Pauli matrices.
    1. In the standard basis the matrices for the operators S^{(1)}_x S^{(2)}_y and S^{(1)}_y S^{(2)}_x are, respectively,
      1. {\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}1&0\\0&-1\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-1&0\\0&1\end{pmatrix}}
      2. {\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-i&0\\0&i\end{pmatrix}}
      3. {\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&i&0\\0&-i&0&0\\i&0&0&0\end{pmatrix}},
        {\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&-i&0\\0&i&0&0\\i&0&0&0\end{pmatrix}}
      4. {\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&-i\\0&0&i&0\end{pmatrix}},
        {\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&-i&0&0\\i&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}
    2. These two operators satisfy the relation
      1. {\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=S^{(1)}_z S^{(2)}_z}
      2. {\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=0}
      3. {\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=iS^{(1)}_z S^{(2)}_z}
      4. {\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=0}
  4. The radius of ^{64}_{29}Cu nucleus is measured to be 4.8\times10^{-13} cm.
    1. The radius of ^{27}_{12}Mg nucleus can be estimated to be
      1. 2.86\times10^{-13} cm
      2. 5.2\times10^{-13} cm
      3. 3.6\times10^{-13} cm
      4. 8.6\times10^{-13} cm
    2. The root-mean square (rms)- energy of a nucleon in a nucleus of atomic number A in its ground state varies as:
      1. A^{4/3}
      2. A^{1/3}
      3. A^{-1/3}
      4. A^{-2/3}

4 comments :

  1. Mujawar Tahenish: Sir this is proper and useful guidance for the preparation of competitive exams like NET,SET GATE.

    ReplyDelete
  2. Rajpure Rutuja: sir blog is good and effective for the preparation of SET and NET examination.
    Thank you sir for such a great activity and this is very useful for me.

    ReplyDelete
  3. Bhosale Varsha: Thank you Sir for such great activity.

    ReplyDelete