Physics Resonance: Problem set 30 -->

Notice

Wednesday, 23 November 2016

Problem set 30

  1. A particle is confined to the region $x \ge 0$ by a potential which increases linearly as $u(x) = u_0x$. The mean position of the particle at temperature $T$ is
    1. $\frac{k_BT}{u_0}$
    2. $\frac{(k_BT)^2}{u_0}$
    3. $\sqrt{\frac{k_BT}{u_0}}$
    4. $u_0k_BT$
  2. A plane electromagnetic wave is propagating in a loss-less dielectric. The electric field is given by $${\scriptstyle\vec E(x,y,z,t)=E_0(\hat x+A\hat z)\exp{\left[ik_0\left\{-ct+\left(x+\sqrt{3}z\right)\right\}\right]}}$$ where $c$ is the speed of light in vacuum, $E_0$ , $A$ and $k_0$ are constants and $\hat x$ and $\hat z$ are unit vectors along the x- and z-, axes. The relative dielectric constant of the medium, $\epsilon_r$ and the constant $A$ are
    1. $\epsilon_r=4$ and $A=-\frac{1}{\sqrt{3}}$
    2. $\epsilon_r=4$ and $A=+\frac{1}{\sqrt{3}}$
    3. $\epsilon_r=4$ and $A=\sqrt{3}$
    4. $\epsilon_r=4$ and $A=-\sqrt{3}$
  3. In a system consisting of two spin-$\frac{1}{2}$ particles labeled 1 and 2, let $\vec S^{(1)} = \frac{\hbar}{2}\vec\sigma^{(1)}$ and $\vec S^{(2)} = \frac{\hbar}{2}\vec\sigma^{(2)}$ denote the corresponding spin operators. Here $\vec\sigma\equiv (\sigma_x ,\sigma_y ,\sigma_z)$ and $\sigma_x ,\sigma_y ,\sigma_z$ are the three Pauli matrices.
    1. In the standard basis the matrices for the operators $ S^{(1)}_x S^{(2)}_y$ and $S^{(1)}_y S^{(2)}_x$ are, respectively,
      1. ${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}1&0\\0&-1\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-1&0\\0&1\end{pmatrix}}$
      2. ${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-i&0\\0&i\end{pmatrix}}$
      3. $${\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&i&0\\0&-i&0&0\\i&0&0&0\end{pmatrix}},$$$${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&-i&0\\0&i&0&0\\i&0&0&0\end{pmatrix}}$$
      4. $${\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&-i\\0&0&i&0\end{pmatrix}},$$$${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&-i&0&0\\i&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}$$
    2. These two operators satisfy the relation
      1. ${\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=S^{(1)}_z S^{(2)}_z}$
      2. ${\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=0}$
      3. ${\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=iS^{(1)}_z S^{(2)}_z}$
      4. ${\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=0}$
  4. The radius of $^{64}_{29}Cu$ nucleus is measured to be $4.8\times10^{-13} cm$.
    1. The radius of $^{27}_{12}Mg$ nucleus can be estimated to be
      1. $2.86\times10^{-13} cm$
      2. $5.2\times10^{-13} cm$
      3. $3.6\times10^{-13} cm$
      4. $8.6\times10^{-13} cm$
    2. The root-mean square (rms)- energy of a nucleon in a nucleus of atomic number $A$ in its ground state varies as:
      1. $A^{4/3}$
      2. $A^{1/3}$
      3. $A^{-1/3}$
      4. $A^{-2/3}$

4 comments :

  1. Mujawar Tahenish: Sir this is proper and useful guidance for the preparation of competitive exams like NET,SET GATE.

    ReplyDelete
  2. Rajpure Rutuja: sir blog is good and effective for the preparation of SET and NET examination.
    Thank you sir for such a great activity and this is very useful for me.

    ReplyDelete
  3. Bhosale Varsha: Thank you Sir for such great activity.

    ReplyDelete