Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 10 November 2016
Problem set 23
A diode $D$ as shown in the circuit has an $i-V$ relation that can be approximated by
\begin{align*}
i_{_D}=\begin{cases}
v^2_{_D}+2v_{_D},&\text{for }v_{_D}>0\\
0,&\text{for }v_{_D}\leq 0
\end{cases}
\end{align*}
The value of $v_{_D}$ in the circuit is
$(-1+\sqrt{11})$
$8V$
$5V$
$2V$
Applying Kirchhoff's voltage law
$$i_{_D}(1)+v_{_D}=10$$
Also, for $v_{_D}>0$ we have
$$i_{_D}=v^2_{_D}+2v_{_D}$$
Substituting value of $i_{_D}$ from second equation into the first equation, we get
$$v^2_{_D}+3v_{_D}-10=0$$
Solving this quadratic equation for $v_{_D}$, we get, $v_{_D}=2$ or $v_{_D}=-5$. But for $v_{_D}<0$ we get $i_{_D}=0$, hence $v_{_D}=2$.
Hence, answer is (D)
The Taylor expansion of the function $\ln{(\cosh x)}$, where $x$ is real, about the point $x= 0$ starts with the following terms:
$-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots$
$\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots$
$-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
$\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
We will require following identities:
$$\sinh{x}=\frac{e^x-e^{-x}}{2}$$
$$\cosh{x}=\frac{e^x+e^{-x}}{2}$$
$$\tanh{x}=\frac{\sinh{x}}{\cosh{x}}$$
$$\frac{d}{dx}\sinh{x}=\cosh{x}$$
$$\frac{d}{dx}\cosh{x}=\sinh{x}$$
$$\frac{d}{dx}\tanh{x}=\text{sech }^2{x}$$
$$\frac{d}{dx}\text{sech }{x}=-\text{sech }{x}\tanh{x}$$
Taylor series of $f(x)$ about $x=0$ is given by
\begin{align*}
f(x)&=f(x)+\frac{1}{1!}f'(0)x+\frac{1}{2!}f''(0)x^2\\
&+\frac{1}{3!}f'''(0)x^3+\frac{1}{4!}f''''(0)x^4+..
\end{align*}
\begin{align*}
&f(x)=\ln{(\cosh{x})}\\
&\Rightarrow f(0)=0\\
&f'(x)=\tanh{x} \\
&\Rightarrow f'(0)=0\\
&f''(x)=\text{sech }^2{x}=1-\tanh^2{x}\\
&\Rightarrow f''(0)=1\\
&f'''(x)=-2\text{sech }^2{x}\tanh{x}\\
&\Rightarrow f'''(0)=0\\
f''''(x)&=4\text{sech }^2{x}\tanh^2{x}-2\text{sech }^4{x} \\
&\Rightarrow f''''(0)=-2
\end{align*}
$$f(x)=\frac{1}{2!}x^2-\frac{1}{12}x^4+\cdots$$
Hence, answer is (B)
Given $2\times2$ unitary matrix $U$ satisfying $U^\dagger U=UU^\dagger = 1$ with $\det U = e^{i\phi}$, one can
construct a unitary matrix $V \:( V^\dagger V = VV^\dagger= 1)$ with $\det V=1$ from it by
multiplying $U$ by $e^{i\phi/2}$
multiplying any single element of $U$ by $e^{i\phi}$
multiplying any row or column of $U$ by $e^{i\phi/2}$
multiplying $U$ by $e^{i\phi}$
The general $2\times 2$ unitary matrix is defined by
\begin{equation*}
U=\begin{pmatrix}
a&b\\ -e^{i\phi}b^*&e^{i\phi}a^*
\end{pmatrix}
\end{equation*}
Clearly, as columns or rows of $U$ form an orthonormal set, we have, $|a|^2+|b|^2=1$ and $\det{U}=e^{i\phi}$.
Let us take option (A) i.e. multiplying $U$ by $e^{-i\phi/2}$
\begin{equation*}
V=e^{-i\phi}U=\begin{pmatrix}
e^{-i\phi/2}a&e^{-i\phi/2}b\\ -e^{i\phi/2}b^*&e^{i\phi/2}a^*
\end{pmatrix}
\end{equation*}
Clearly, we get, $\det{V}=1$.
Hence, option (A) is correct
The value of the integral $\int_C \frac{z^3dz}{z^2-5z+6}$, where $C$ is a closed contour defined by the equation $2|z|- 5 = 0$, traversed in the anti-clockwise direction, is
$-16\pi i$
$16\pi i$
$8\pi i$
$2\pi i$
\begin{align*}
&\int_C\frac{z^3dz}{z^2-5z+6} \quad C:|z|=\frac{5}{2}=2.5\\
&= \int_C\frac{z^3dz}{(z-2)(z-3)}\\
&= \int_C\frac{\frac{z^3}{(z-3)}}{(z-2)}dz
\end{align*}
The function has a pole of order 1 at $z=2$ which lies inside $C$. According to residue theorem
\begin{align*}
&\oint\limits_Cf(z)dz\\
&=2\pi i\times&\text{sum of residues at}\\
&&\text{ poles inside }C
\end{align*}
In general the residue at a pole of order $m$ at $z=z_0$ is
\begin{eqnarray}
\begin{array}{c}R=\frac{1}{(m-1)!}\lim\limits_{z\to z_0}\left\{\frac{d^{m-1}\left((z-z_0)^mf(z)\right)}{dz^{m-1}}\right\}_{z=z_0}\end{array}
\end{eqnarray}
For simple pole of order 1
$$R=\lim\limits_{z\to z_0}\left\{(z-z_0)f(z_0)\right\}$$
$$R=\lim\limits_{z\to 2}\left\{(z-2)\frac{\frac{z^3}{(z-3)}}{(z-2)}\right\}=-8$$
$$\oint_Cf(z)dz=2\pi i\times(-8)=-16\pi i$$
Hence, answer is (A)
The function $f(x)$ obeys the differential equation $\frac{d^2f}{dx^2}-(3 - 2i)f = 0$ and satisfies the conditions $f(0) = 1$ and $f(x)\rightarrow \infty$ as $x\rightarrow 0$. The value of $f(\pi)$ is
No comments :
Post a Comment