Physics Resonance: Problem set 23 -->

Notice

Thursday, 10 November 2016

Problem set 23

  1. A diode $D$ as shown in the circuit has an $i-V$ relation that can be approximated by \begin{align*} i_{_D}=\begin{cases} v^2_{_D}+2v_{_D},&\text{for }v_{_D}>0\\ 0,&\text{for }v_{_D}\leq 0 \end{cases} \end{align*}
    The value of $v_{_D}$ in the circuit is
    1. $(-1+\sqrt{11})$
    2. $8V$
    3. $5V$
    4. $2V$
  2. The Taylor expansion of the function $\ln{(\cosh x)}$, where $x$ is real, about the point $x= 0$ starts with the following terms:
    1. $-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots$
    2. $\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots$
    3. $-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
    4. $\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
  3. Given $2\times2$ unitary matrix $U$ satisfying $U^\dagger U=UU^\dagger = 1$ with $\det U = e^{i\phi}$, one can construct a unitary matrix $V \:( V^\dagger V = VV^\dagger= 1)$ with $\det V=1$ from it by
    1. multiplying $U$ by $e^{i\phi/2}$
    2. multiplying any single element of $U$ by $e^{i\phi}$
    3. multiplying any row or column of $U$ by $e^{i\phi/2}$
    4. multiplying $U$ by $e^{i\phi}$
  4. The value of the integral $\int_C \frac{z^3dz}{z^2-5z+6}$, where $C$ is a closed contour defined by the equation $2|z|- 5 = 0$, traversed in the anti-clockwise direction, is
    1. $-16\pi i$
    2. $16\pi i$
    3. $8\pi i$
    4. $2\pi i$
  5. The function $f(x)$ obeys the differential equation $\frac{d^2f}{dx^2}-(3 - 2i)f = 0$ and satisfies the conditions $f(0) = 1$ and $f(x)\rightarrow \infty$ as $x\rightarrow 0$. The value of $f(\pi)$ is
    1. $e^{2\pi}$
    2. $e^{-2\pi}$
    3. $-e^{-2\pi}$
    4. $-e^{2\pi i}$

No comments :

Post a Comment