Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 10 November 2016
Problem set 23
A diode D as shown in the circuit has an i-V relation that can be approximated by
\begin{align*}
i_{_D}=\begin{cases}
v^2_{_D}+2v_{_D},&\text{for }v_{_D}>0\\
0,&\text{for }v_{_D}\leq 0
\end{cases}
\end{align*}
The value of v_{_D} in the circuit is
(-1+\sqrt{11})
8V
5V
2V
Applying Kirchhoff's voltage law
i_{_D}(1)+v_{_D}=10
Also, for v_{_D}>0 we have
i_{_D}=v^2_{_D}+2v_{_D}
Substituting value of i_{_D} from second equation into the first equation, we get
v^2_{_D}+3v_{_D}-10=0
Solving this quadratic equation for v_{_D}, we get, v_{_D}=2 or v_{_D}=-5. But for v_{_D}<0 we get i_{_D}=0, hence v_{_D}=2.
Hence, answer is (D)
The Taylor expansion of the function \ln{(\cosh x)}, where x is real, about the point x= 0 starts with the following terms:
-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots
\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots
-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots
\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots
We will require following identities:
\sinh{x}=\frac{e^x-e^{-x}}{2}\cosh{x}=\frac{e^x+e^{-x}}{2}\tanh{x}=\frac{\sinh{x}}{\cosh{x}}\frac{d}{dx}\sinh{x}=\cosh{x}\frac{d}{dx}\cosh{x}=\sinh{x}\frac{d}{dx}\tanh{x}=\text{sech }^2{x}\frac{d}{dx}\text{sech }{x}=-\text{sech }{x}\tanh{x}
Taylor series of f(x) about x=0 is given by
\begin{align*}
f(x)&=f(x)+\frac{1}{1!}f'(0)x+\frac{1}{2!}f''(0)x^2\\
&+\frac{1}{3!}f'''(0)x^3+\frac{1}{4!}f''''(0)x^4+..
\end{align*}\begin{align*}
&f(x)=\ln{(\cosh{x})}\\
&\Rightarrow f(0)=0\\
&f'(x)=\tanh{x} \\
&\Rightarrow f'(0)=0\\
&f''(x)=\text{sech }^2{x}=1-\tanh^2{x}\\
&\Rightarrow f''(0)=1\\
&f'''(x)=-2\text{sech }^2{x}\tanh{x}\\
&\Rightarrow f'''(0)=0\\
f''''(x)&=4\text{sech }^2{x}\tanh^2{x}-2\text{sech }^4{x} \\
&\Rightarrow f''''(0)=-2
\end{align*}f(x)=\frac{1}{2!}x^2-\frac{1}{12}x^4+\cdots
Hence, answer is (B)
Given 2\times2 unitary matrix U satisfying U^\dagger U=UU^\dagger = 1 with \det U = e^{i\phi}, one can
construct a unitary matrix V \:( V^\dagger V = VV^\dagger= 1) with \det V=1 from it by
multiplying U by e^{i\phi/2}
multiplying any single element of U by e^{i\phi}
multiplying any row or column of U by e^{i\phi/2}
multiplying U by e^{i\phi}
The general 2\times 2 unitary matrix is defined by
\begin{equation*}
U=\begin{pmatrix}
a&b\\ -e^{i\phi}b^*&e^{i\phi}a^*
\end{pmatrix}
\end{equation*}
Clearly, as columns or rows of U form an orthonormal set, we have, |a|^2+|b|^2=1 and \det{U}=e^{i\phi}.
Let us take option (A) i.e. multiplying U by e^{-i\phi/2}\begin{equation*}
V=e^{-i\phi}U=\begin{pmatrix}
e^{-i\phi/2}a&e^{-i\phi/2}b\\ -e^{i\phi/2}b^*&e^{i\phi/2}a^*
\end{pmatrix}
\end{equation*}
Clearly, we get, \det{V}=1.
Hence, option (A) is correct
The value of the integral \int_C \frac{z^3dz}{z^2-5z+6}, where C is a closed contour defined by the equation 2|z|- 5 = 0, traversed in the anti-clockwise direction, is
-16\pi i
16\pi i
8\pi i
2\pi i
\begin{align*}
&\int_C\frac{z^3dz}{z^2-5z+6} \quad C:|z|=\frac{5}{2}=2.5\\
&= \int_C\frac{z^3dz}{(z-2)(z-3)}\\
&= \int_C\frac{\frac{z^3}{(z-3)}}{(z-2)}dz
\end{align*}
The function has a pole of order 1 at z=2 which lies inside C. According to residue theorem
\begin{align*}
&\oint\limits_Cf(z)dz\\
&=2\pi i\times&\text{sum of residues at}\\
&&\text{ poles inside }C
\end{align*}
In general the residue at a pole of order m at z=z_0 is
\begin{eqnarray}
\begin{array}{c}R=\frac{1}{(m-1)!}\lim\limits_{z\to z_0}\left\{\frac{d^{m-1}\left((z-z_0)^mf(z)\right)}{dz^{m-1}}\right\}_{z=z_0}\end{array}
\end{eqnarray}
For simple pole of order 1
R=\lim\limits_{z\to z_0}\left\{(z-z_0)f(z_0)\right\}R=\lim\limits_{z\to 2}\left\{(z-2)\frac{\frac{z^3}{(z-3)}}{(z-2)}\right\}=-8\oint_Cf(z)dz=2\pi i\times(-8)=-16\pi i
Hence, answer is (A)
The function f(x) obeys the differential equation \frac{d^2f}{dx^2}-(3 - 2i)f = 0 and satisfies the conditions f(0) = 1 and f(x)\rightarrow \infty as x\rightarrow 0. The value of f(\pi) is
No comments :
Post a Comment