Physics Resonance: Problem set 27 -->

Notice

Friday 18 November 2016

Problem set 27

  1. The Fourier transform of $f(x)$ is $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$. If $f(x)=\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)$, where $\delta(x)$ is the Dirac delta-function (and prime denotes derivative), what is $\tilde{f}(k)$?
    1. $\alpha+i\beta k+i\gamma k^2$
    2. $\alpha+\beta k-\gamma k^2$
    3. $\alpha-i\beta k-\gamma k^2$
    4. $i\alpha+\beta k-i\gamma k^2$
  2. A particle moves in three-dimensional space in a central potential $V(r)=kr^4$, where $k$ is a constant. The angular frequency $\omega$ for a circular orbit depends on its radius $R$ as
    1. $\omega\propto R$
    2. $\omega\propto R^{-1}$
    3. $\omega\propto R^{1/4}$
    4. $\omega\propto R^{-2/3}$
  3. The Lagrangian of a system is given by ${\scriptstyle L=\frac{1}{2}m\dot q_1^2+2m\dot q_2^2-k\left(\frac{5}{4}q_1^2+2q_2^2-2q_1q_2\right)}$ where $m$ and $k$ are positive constants. The frequencies of its normal modes are
    1. $\sqrt{\frac{k}{2m}}\sqrt{\frac{3k}{m}}$
    2. $\sqrt{\frac{k}{2m}}(13\pm\sqrt{73})$
    3. $\sqrt{\frac{5k}{2m}}\sqrt{\frac{k}{m}}$
    4. $\sqrt{\frac{k}{2m}}\sqrt{\frac{6k}{m}}$
  4. Consider a particle of mass $m$ moving with a speed $v$. If $T_R$ denotes the relativistic kinetic energy and $T_N$ its non-relativistic approximation, then the value of $(T_R-T_N)/T_R$ for $v=0.01\:c$, is
    1. $1.25\times10^{-5}$
    2. $5.0\times10^{-5}$
    3. $7.5\times10^{-5}$
    4. $1.0\times10^{-4}$
  5. Two masses, $m$ each, are placed at the points $(x,y)=(a,a)$ and $(-a,-a)$. Two masses, $2m$ each, are placed at the points $(a,-a)$ and $(-a,a)$. The principal moments of inertia of the system are
    1. $2ma^2$, $4ma^2$
    2. $4ma^2$, $8ma^2$
    3. $4ma^2$, $4ma^2$
    4. $8ma^2$, $8ma^2$

No comments :

Post a Comment