Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 18 November 2016
Problem set 27
The Fourier transform of $f(x)$ is $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$. If
$f(x)=\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)$, where $\delta(x)$ is the Dirac delta-function
(and prime denotes derivative), what is $\tilde{f}(k)$?
$\alpha+i\beta k+i\gamma k^2$
$\alpha+\beta k-\gamma k^2$
$\alpha-i\beta k-\gamma k^2$
$i\alpha+\beta k-i\gamma k^2$
For Dirac delta function, we have,
$$\int\limits f(x)\delta(x-y)\:dx=f(y)$$
$$\int\limits f(x)\delta'(x-y)\:dx=-f'(y)$$
$$\int\limits f(x)\delta''(x-y)\:dx=(-1)^2f''(y)$$
$$\int\limits f(x)\delta^n(x-y)\:dx=(-1)^nf^n(y)$$
\begin{align*}
\tilde{f}(k)&={\scriptstyle\int\limits_{-\infty}^{\infty}dx\:e^{ikx}\left(\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)\right)}\\
&=\alpha f(0)+\beta(-f'(0))+\gamma f''(0)\\
&=\alpha-i\beta k-\gamma k^2
\end{align*}
Hence, answer is (C)
A particle moves in three-dimensional space in a central potential $V(r)=kr^4$, where $k$ is a constant. The angular
frequency $\omega$ for a circular orbit depends on its radius $R$ as
$\omega\propto R$
$\omega\propto R^{-1}$
$\omega\propto R^{1/4}$
$\omega\propto R^{-2/3}$
Force acting on particle is given by
\begin{eqnarray}
\begin{array}{c}\vec F(r)=-\nabla V(r)\\
{\scriptstyle=-\left(\hat r\frac{\partial}{\partial r}+\hat\theta\frac{1}{r}\frac{\partial}{\partial\theta}+\hat\phi\frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}\right)\left(kr^4\right)}\\
=-4kr^3\hat r\end{array}
\end{eqnarray}
For circular motion in radius $R$, we must have
$$\frac{mv^2}{R}=F(R)=-4kR^3$$
Using $V=R\omega$
$$\frac{mR^2\omega^2}{R}=-4kR^3$$
$$\omega^2=\frac{-4kR^2}{m}$$
$$\omega\propto R$$
Hence, answer is (A)
The Lagrangian of a system is given by ${\scriptstyle L=\frac{1}{2}m\dot q_1^2+2m\dot q_2^2-k\left(\frac{5}{4}q_1^2+2q_2^2-2q_1q_2\right)}$
where $m$ and $k$ are positive constants. The frequencies of its normal modes are
$\sqrt{\frac{k}{2m}}\sqrt{\frac{3k}{m}}$
$\sqrt{\frac{k}{2m}}(13\pm\sqrt{73})$
$\sqrt{\frac{5k}{2m}}\sqrt{\frac{k}{m}}$
$\sqrt{\frac{k}{2m}}\sqrt{\frac{6k}{m}}$
Lagrange equation is
$$\frac{d}{dt}\left(\frac{\partial L}{\partial\dot q_j}\right)-\frac{\partial L}{\partial q_j}$$
Substituting value of $L$ for generalized coordinates $q_1$ and $q_2$ we get
$$m\ddot q_1+k\left(\frac{5}{2}q_1-2q_2\right)=0\quad (1)$$
$$4m\ddot q_2+k\left(4q_2-2q_1\right)=0\quad (2)$$
Form normal modes, both particles moves simple harmonically with same frequency $\omega$, hence, we have
$$\ddot q_1=-\omega^2q_1$$
$$\ddot q_2=-\omega^2q_2$$
Substituting values of $\ddot q_1$ and $\ddot q_2$ in equations (1) and (2), we get
$$\left(\frac{5}{2}k-m\omega^2\right)q_1=2kq_2\quad (3)$$
$$\left(4k-4m\omega^2\right)q_2=2kq_1\quad (4)$$
From equation (3) and (4) we get
$$\frac{q_2}{q_1}=\frac{\left(\frac{5}{2}k-m\omega^2\right)}{2k}$$
$$\frac{q_2}{q_1}=\frac{2k}{\left(4k-4m\omega^2\right)}$$
Hence, we have
$$\frac{\left(\frac{5}{2}k-m\omega^2\right)}{2k}=\frac{2k}{\left(4k-4m\omega^2\right)}$$
Solving this equation, we get
$$2m^2\omega^4-7km\omega^2+3k^2=0$$
This is a quadratic equation in $\omega^2$. Solving this equation we get
$$\omega^2=\frac{k}{2m}\quad\text{or }\frac{3k}{m}$$
or we get
$$\omega=\sqrt{\frac{k}{2m}}\quad\text{or }\sqrt{\frac{3k}{m}}$$
Hence, answer is (A)
Consider a particle of mass $m$ moving with a speed $v$. If $T_R$ denotes the relativistic kinetic energy and $T_N$
its non-relativistic approximation, then the value of $(T_R-T_N)/T_R$ for $v=0.01\:c$, is
Two masses, $m$ each, are placed at the points $(x,y)=(a,a)$ and $(-a,-a)$. Two masses, $2m$ each, are placed at the points
$(a,-a)$ and $(-a,a)$. The principal moments of inertia of the system are
$2ma^2$, $4ma^2$
$4ma^2$, $8ma^2$
$4ma^2$, $4ma^2$
$8ma^2$, $8ma^2$
Inertia tensor is given by
$${\scriptscriptstyle{I}=\begin{pmatrix}
\sum\limits_\alpha m_\alpha\left(x_{\alpha,2}^2+x_{\alpha,3}^2\right)&-\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,2}&-\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,3}\\
-\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,1}&\sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2+x_{\alpha,3}^2\right)&-\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,3}\\
-\sum\limits_\alpha m_\alpha x_{\alpha,3}x_{\alpha,1}&-\sum\limits_\alpha m_\alpha x_{\alpha,3}x_{\alpha,2}&\sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2+x_{\alpha,2}^2\right)
\end{pmatrix}
}$$
where, $\alpha$ runs over number of particles. Here, $x_{\alpha,1}$ means x-coordinate of particle number $\alpha$, $x_{\alpha,2}$ means y-coordinate of particle number $\alpha$ and $x_{\alpha,3}$ means z-coordinate of particle number $\alpha$
For a two-dimensional case, we have
$${\scriptstyle{I}=\begin{pmatrix}
\sum\limits_\alpha m_\alpha\left(x_{\alpha,2}^2\right)&-\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,2}\\
-\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,1}&\sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2\right)
\end{pmatrix}
}$$
\begin{align*}
I_{11}&= \sum\limits_\alpha m_\alpha\left(x_{\alpha,2}^2\right)\\
&=ma^2+ma^2+2ma^2+2ma^2\\
&=6ma^2
\end{align*}
\begin{align*}
I_{12}&= -\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,2}\\
&=-(ma^2+ma^2-2ma^2-2ma^2)\\
&=2ma^2
\end{align*}
\begin{align*}
I_{21}&= -\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,1}\\
&=-(ma^2+ma^2-2ma^2-2ma^2)\\
&=2ma^2
\end{align*}
\begin{align*}
I_{22}&= \sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2\right)\\
&=ma^2+ma^2+2ma^2+2ma^2\\
&=6ma^2
\end{align*}
$${I}=\begin{pmatrix}
6ma^2&2ma^2\\
2ma^2&6ma^2
\end{pmatrix}
$$
The principal moments of inertia are obtained by solving
$${I}=\begin{vmatrix}
6ma^2-\lambda&2ma^2\\
2ma^2&6ma^2-\lambda
\end{vmatrix}=0$$
Solving this determinant we get
$$\lambda^2-12ma^2\lambda+32m^2a^4=0$$
Solving this quadratic equation in $\lambda$ we get,
$\lambda_1=8ma^2$ and $\lambda_2=4ma^2$
Hence, answer is (B)
No comments :
Post a Comment