Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Monday, 14 November 2016
Problem set 25
The energies in the ground state and first excited state of a particle of mass m =\frac{1}{2} in a potential
V(x) are -4 and -1, respectively, (in units in which \hbar = 1 ). If the corresponding
wavefunctions are related by \psi_1(x)=\psi_0(x) \sinh x, then the ground state eigenfunction is
\psi_0(x)=\sqrt{sech~ x}
\psi_0(x)=sech~ x
\psi_0(x)=sech^2~ x
\psi_0(x)=sech^3~ x
Schrodinger equation is
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V\psi=E\psi
For \hbar=1,m=m/2-\frac{d^2\psi}{dx^2}+V\psi=E\psi
For ground state
-\frac{d^2\psi_0}{dx^2}+V\psi_0=-4\psi_0\quad \dots(1)-\frac{d^2\psi_1}{dx^2}+V\psi_1=-\psi_1\quad \dots(2)
Substituting \psi_1=\psi_0\sinh{x} in equation (2)
{\scriptstyle-\frac{d^2(\psi_0\sinh{x})}{dx^2}+V\psi_0\sinh{x}=-\psi_0\sinh{x}}
Solving this we get
{\scriptstyle-\frac{d^2\psi_0}{dx^2}\sinh{x}-2\frac{d\psi_0}{dx}\cosh{x}-\psi_0\sinh{x}+V\psi_0=-\psi_0\sinh{x}}
Rearranging
\begin{align*}
&-\frac{d^2\psi_0}{dx^2}-2\coth{x}\frac{d\psi_0}{dx}-\psi_0\sinh{x}\\
&+V\psi_0=-\psi_0\sinh{x}
\end{align*}
substituting value of -\frac{d^2\psi_0}{dx^2}+V\psi_0=-4\psi_0 from equation (1), we get
\coth{x}\frac{d\psi_0}{dx}=-2\psi_0\frac{d\psi_0}{\psi_0}=-2\frac{dx}{\coth{x}}=-2\tanh{x}dx
Integrating above equation
\ln\psi_0=-2\ln{\cosh{x}}=\ln\text{sech}^{2}{x}\psi_0=\text{sech}^{2}{x}
Hence, answer is (C)
The perturbation
\begin{align*}
H'=\begin{cases}
b(a-x),&-a < x < a\\
0&\text{otherwise}
\end{cases}
\end{align*}
acts on a particle of mass m confined in an infinite square well potential
\begin{align*}
V(x)=\begin{cases}
0,&-a < x < a\\
\infty&\text{otherwise}
\end{cases}
\end{align*}
The first order correction to the ground-state energy of the particle is
\frac{ba}{2}
\frac{ba}{\sqrt{2}}
2ba
ba
\begin{align*}
&E_0^{(1)}=\int\psi^*H'\psi\:dx\\
&=\frac{1}{a}\int\limits_{-a}^{a}\sin{\frac{\pi x}{2a}}b(a-x)\sin{\frac{\pi x}{2a}}dx\\
&=\frac{b}{a}\int\limits_{-a}^{a}\sin^2{\frac{\pi x}{2a}}\:(a-x)\:dx\\
&=\frac{b}{2a}\int\limits_{-a}^{a}\left(1-\cos{\frac{\pi x}{a}}\right)(a-x)dx\\
&=\frac{b}{2a}\left\{\int\limits_{-a}^{a}(a-x)dx\right.\\
&\left.-\int\limits_{-a}^{a}\cos{\frac{\pi x}{a}}(a-x)dx\right\}
\end{align*}
Odd functions have integration zero
\begin{align*}
E_0^{(1)}&=\frac{b}{2a}\left\{a\int\limits_{-a}^{a}dx-a\int\limits_{-a}^{a}\cos{\frac{\pi x}{a}}dx\right\}\\
&=\frac{b}{2a}\left\{2a^2-0\right\}=ba
\end{align*}
Hence, answer is (D)
Let |0> and |1> denote the normalized eigenstates corresponding to the ground and the first
excited states of a one-dimensional harmonic oscillator. The uncertainty \Delta x in the state
\frac{1}{\sqrt{2}}\left(|0>+|1>\right) is
What would be the ground state energy of the Hamiltonian H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x)
if variational principle is used to estimate it with the trial wavefunction \psi(x)= Ae^{-bx^2} with b
as the variational parameter?
[Hint: {\scriptstyle\int_{-\infty}^{\infty} x^{2n} e^{-2bx^2}\:dx = (2b)^{-n-\frac{1}{2}}\Gamma\left(n+\frac{1}{2}\right)}]
-m\alpha^2/2\hbar^2
-2m\alpha^2/\pi\hbar^2
-m\alpha^2/\pi\hbar^2
m\alpha^2/\pi\hbar^2
According to variational principle ground state energy is given by
E=\frac{<\psi|H|\psi>}{<\psi|\psi>}\begin{align*}
<\psi|\psi>&=|A|^2\int\limits_{-\infty}^{\infty}e^{-2bx^2}\:dx\\
&=|A|^2\sqrt{\frac{\pi}{2b}}
\end{align*}
Using normalization condition <\psi|\psi>=1, we get, A=\left(\frac{2b}{\pi}\right)^{\frac{1}{4}}\psi(x)= \left(\frac{2b}{\pi}\right)^{\frac{1}{4}}e^{-bx^2}\begin{align*}
& E=<\psi|H|\psi>\\
&=\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\int\limits_{-\infty}^{\infty}e^{-bx^2}\:H\:e^{-bx^2}\:dx\\
&={\scriptstyle\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\int\limits_{-\infty}^{\infty}e^{-bx^2}\:\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x)\right)\:e^{-bx^2}\:dx}\\
&={\scriptstyle\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\left\{-\frac{\hbar^2}{2m}\int\limits_{-\infty}^{\infty}e^{-bx^2}\:\frac{d^2}{dx^2}e^{-bx^2}dx\right.}\\
&{\scriptstyle\left.-\int\limits_{-\infty}^{\infty}e^{-bx^2}\alpha \delta(x)\:e^{-bx^2}\:dx\right\}}\\
&={\scriptstyle\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\left\{-\frac{\hbar^2}{2m}\int\limits_{-\infty}^{\infty}e^{-bx^2}\:\frac{d}{dx}\left(-2bxe^{-bx^2}\right)dx\right.}\\
&{\scriptstyle\left.-\alpha\int\limits_{-\infty}^{\infty}e^{-2bx^2} \delta(x)\:dx\right\}}\\
&={\scriptstyle\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\left\{\frac{\hbar^2b}{m}\int\limits_{-\infty}^{\infty}e^{-bx^2}\:\left(e^{-bx^2}-2bxe^{-bx^2}\right)dx-\alpha\right\}}\\
&={\scriptstyle\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\left\{\frac{\hbar^2b}{m}\left[\int\limits_{-\infty}^{\infty}e^{-2bx^2}\:dx-2b\int\limits_{-\infty}^{\infty}xe^{-2bx^2}dx\right]-\alpha\right\}}\\
&=\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\left\{\frac{\hbar^2b}{m}\left[\sqrt{\frac{\pi}{2b}}-0\right]-\alpha\right\}\\
&=\frac{\hbar^2b}{m}-\left(\frac{2b}{\pi}\right)^{\frac{1}{2}}\alpha
\end{align*}\frac{\partial E}{\partial b}=\frac{\hbar^2}{m}-\frac{1}{2}\left(\frac{2}{b\pi}\right)^{\frac{1}{2}}\alpha=0 gives
b=\frac{m^2\alpha^2}{2\hbar^4\pi}\begin{align*}
E&=\frac{\hbar^2}{m}\frac{m^2\alpha^2}{2\hbar^4\pi}-\left(\frac{2}{\pi}\frac{m^2\alpha^2}{2\hbar^4\pi}\right)^{\frac{1}{2}}\alpha\\
&=-\frac{m\alpha^2}{2\pi\hbar^2}
\end{align*}
A given quantity of gas is taken from the state A \rightarrow C reversibly, by two paths, A\rightarrow C
directly and A\rightarrow B\rightarrow C as shown in the figure below.
During the process A\rightarrow C the work done by the gas is 100 J and the heat absorbed is 150 J. If
during the process A\rightarrow B\rightarrow C the workdone by the gas is 30 J, the heat absorbed is
20 J
80 J
220 J
280 J
\delta Q=dU+\delta W
For path A\rightarrow C, \delta W=100 J and \delta Q=150 J150=du+100dU=50 J
As, dU is a state function, it does not depend on the path followed. Hence, for the path A\rightarrow B\rightarrow C,
we have
\delta Q=50+30=80 J
Hence, answer is (B)
No comments :
Post a Comment