Physics Resonance: Problem set 25 -->

Notice

Monday, 14 November 2016

Problem set 25

  1. The energies in the ground state and first excited state of a particle of mass $m =\frac{1}{2}$ in a potential $V(x)$ are $-4$ and $-1$, respectively, (in units in which $\hbar = 1$ ). If the corresponding wavefunctions are related by $\psi_1(x)=\psi_0(x) \sinh x$, then the ground state eigenfunction is
    1. $\psi_0(x)=\sqrt{sech~ x}$
    2. $\psi_0(x)=sech~ x$
    3. $\psi_0(x)=sech^2~ x$
    4. $\psi_0(x)=sech^3~ x$
  2. The perturbation \begin{align*} H'=\begin{cases} b(a-x),&-a < x < a\\ 0&\text{otherwise} \end{cases} \end{align*} acts on a particle of mass $m$ confined in an infinite square well potential \begin{align*} V(x)=\begin{cases} 0,&-a < x < a\\ \infty&\text{otherwise} \end{cases} \end{align*} The first order correction to the ground-state energy of the particle is
    1. $\frac{ba}{2}$
    2. $\frac{ba}{\sqrt{2}}$
    3. $2ba$
    4. $ba$
  3. Let $|0>$ and $|1>$ denote the normalized eigenstates corresponding to the ground and the first excited states of a one-dimensional harmonic oscillator. The uncertainty $\Delta x$ in the state $\frac{1}{\sqrt{2}}\left(|0>+|1>\right)$ is
    1. $\Delta x=\sqrt{\hbar/2m\omega}$
    2. $\Delta x=\sqrt{\hbar/m\omega}$
    3. $\Delta x=\sqrt{2\hbar/m\omega}$
    4. $\Delta x=\sqrt{\hbar/4m\omega}$
  4. What would be the ground state energy of the Hamiltonian $H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x)$ if variational principle is used to estimate it with the trial wavefunction $\psi(x)= Ae^{-bx^2}$ with $b$ as the variational parameter? [Hint: ${\scriptstyle\int_{-\infty}^{\infty} x^{2n} e^{-2bx^2}\:dx = (2b)^{-n-\frac{1}{2}}\Gamma\left(n+\frac{1}{2}\right)}$]
    1. $-m\alpha^2/2\hbar^2$
    2. $-2m\alpha^2/\pi\hbar^2$
    3. $-m\alpha^2/\pi\hbar^2$
    4. $m\alpha^2/\pi\hbar^2$
  5. A given quantity of gas is taken from the state $A \rightarrow C$ reversibly, by two paths, $A\rightarrow C$ directly and $A\rightarrow B\rightarrow C$ as shown in the figure below.

    During the process $A\rightarrow C$ the work done by the gas is $100 J$ and the heat absorbed is $150 J$. If during the process $A\rightarrow B\rightarrow C$ the workdone by the gas is $30 J$, the heat absorbed is
    1. 20 J
    2. 80 J
    3. 220 J
    4. 280 J

No comments :

Post a Comment