Processing math: 100%
Physics Resonance: Problem set 19 -->

Notice

Friday, 4 November 2016

Problem set 19

  1. A 2\times2 matrix A has eigenvalues e^{i\pi/5} and e^{i\pi/6}. The smallest value of n such that A^n = I is
    1. 20
    2. 30
    3. 60
    4. 120
  2. In a series of five Cricket matches, one of the captains calls "Heads" every time when the toss is taken. The probability that he will win 3 times and lose 2 times is
    1. 1/8
    2. 5/8
    3. 3/16
    4. 5/16
  3. The unit normal vector at the point \left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right) on the surface of the ellipsoid \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1
    1. \frac{bc\hat i+ca\hat j+ab\hat k}{\sqrt{a^2+b^2+c^2}}
    2. \frac{a\hat i+b\hat j+c\hat k}{\sqrt{a^2+b^2+c^2}}
    3. \frac{b\hat i+c\hat j+a\hat k}{\sqrt{a^2+b^2+c^2}}
    4. \frac{\hat i+\hat j+\hat k}{\sqrt{3}}
  4. A solid cylinder of height H, radius R and density \rho, floats vertically on the surface of a liquid of density \rho_0. The cylinder will be set into oscillatory motion when a small instantaneous downward force is applied. The frequency of oscillation is
    1. \frac{\rho g}{\rho_0 H}
    2. \frac{\rho}{\rho_0}\sqrt{\frac{g}{H}}
    3. \sqrt{\frac{\rho g}{\rho_0 H}}
    4. \sqrt{\frac{\rho_0g}{\rho H}}
  5. Three particles of equal mass m are connected by two identical massless springs of stiffness constant k as shown in the figure:
    If x_1 ,x_2 and x_3 denote the horizontal displacements of the masses from their respective equilibrium positions, the potential energy of the system is
    1. \frac{1}{2}\left[x_1^2+x_2^2+x_3^2\right]
    2. \frac{1}{2}\left[x_1^2+x_2^2+x_3^2-x_2(x_1+x_3)\right]
    3. \frac{1}{2}\left[x_1^2+2x_2^2+x_3^2+2x_2(x_1+x_3)\right]
    4. \frac{1}{2}\left[x_1^2+2x_2^2+x_3^2-2x_2(x_1+x_3)\right]

No comments :

Post a Comment