Physics Resonance: Problem set 19 -->

Notice

Friday, 4 November 2016

Problem set 19

  1. A $2\times2$ matrix $A$ has eigenvalues $e^{i\pi/5}$ and $e^{i\pi/6}$. The smallest value of $n$ such that $A^n = I$ is
    1. 20
    2. 30
    3. 60
    4. 120
  2. In a series of five Cricket matches, one of the captains calls "Heads" every time when the toss is taken. The probability that he will win 3 times and lose 2 times is
    1. 1/8
    2. 5/8
    3. 3/16
    4. 5/16
  3. The unit normal vector at the point $\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)$ on the surface of the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
    1. $\frac{bc\hat i+ca\hat j+ab\hat k}{\sqrt{a^2+b^2+c^2}}$
    2. $\frac{a\hat i+b\hat j+c\hat k}{\sqrt{a^2+b^2+c^2}}$
    3. $\frac{b\hat i+c\hat j+a\hat k}{\sqrt{a^2+b^2+c^2}}$
    4. $\frac{\hat i+\hat j+\hat k}{\sqrt{3}}$
  4. A solid cylinder of height $H$, radius $R$ and density $\rho$, floats vertically on the surface of a liquid of density $\rho_0$. The cylinder will be set into oscillatory motion when a small instantaneous downward force is applied. The frequency of oscillation is
    1. $\frac{\rho g}{\rho_0 H}$
    2. $\frac{\rho}{\rho_0}\sqrt{\frac{g}{H}}$
    3. $\sqrt{\frac{\rho g}{\rho_0 H}}$
    4. $\sqrt{\frac{\rho_0g}{\rho H}}$
  5. Three particles of equal mass $m$ are connected by two identical massless springs of stiffness constant $k$ as shown in the figure:
    If $x_1$ ,$x_2$ and $x_3$ denote the horizontal displacements of the masses from their respective equilibrium positions, the potential energy of the system is
    1. $\frac{1}{2}\left[x_1^2+x_2^2+x_3^2\right]$
    2. $\frac{1}{2}\left[x_1^2+x_2^2+x_3^2-x_2(x_1+x_3)\right]$
    3. $\frac{1}{2}\left[x_1^2+2x_2^2+x_3^2+2x_2(x_1+x_3)\right]$
    4. $\frac{1}{2}\left[x_1^2+2x_2^2+x_3^2-2x_2(x_1+x_3)\right]$

No comments :

Post a Comment