$$\int\frac{dx}{\sqrt{1-x^2}}=2\int dt$$
Let us make substitution $x=\sin\theta$, $dx=\cos\theta$
$$\int d\theta=2t+c_1$$
$$\theta=2t+c_1$$
$$\sin^{-1}x=c_1+2t$$
$$x=c+\sin{2t}$$
At $t=0$, $x=0$, hence, $c=0$
$$x=\sin{2t}$$
However, maximum value of $\sin(2t)$ is 1
$$\sin{2t}=1\quad \text{when } 2t=\frac{\pi}{2}\quad\text{ or }t=\frac{\pi}{4}$$
Hence,
\begin{align*}
x=\begin{cases}
\sin{2t},\quad 0\leq t<\frac{\pi}{2}\\
1,\quad t\geq\frac{\pi}{2}
\end{cases}
\end{align*}
Hence, answer is (B).
Given a uniform magnetic field $\vec B=B_0\hat k$ (where $B_0$ is a constant), a possible choice for the magnetic vector potential $\vec A$ is
Consider a charge $Q$ at the origin of 3-dimensional coordinate system. The flux of the electric field through the curved
surface of a cone that has a height $h$ and a circular base of radius $R$ is
$\frac{Q}{\epsilon_0}$
$\frac{Q}{2\epsilon_0}$
$\frac{hQ}{R\epsilon_0}$
$\frac{QR}{2h\epsilon_0}$
Let us consider a sphere of radius of $h$ (if $h>R$) or of radius $R$ (if $R>h$) with centre at origin. According to Gauss law the flux through entire sphere is $\frac{Q}{\epsilon_0}$. The flux through curved surfaces of cone is half of the flux through sphere i.e. $\frac{Q}{2\epsilon_0}$
Hence, answer is (B)
A Hermitian operator $\hat O$ has two normalised eigenstates $|1 > $ and $|2 > $ with eigenvalues $1$ and $2$, respectively.
The two states $|u > =\cos\theta|1 > +\sin\theta|2 > $ and $|v > =\cos\phi|1 > +\sin\phi|2 > $ are such that $ < v|\hat O|v > =7/4$ and $ < u|v > =0$. Which of the following are possible values of $\theta$ and $\phi$?
The ground state energy of a particle of mass $m$ in the potential $V(x)=V_0\cosh{\left(\frac{x}{L}\right)}$, where
$L$ and $V_0$ are constants (and $V_0>>\frac{\hbar^2}{2mL^2}$) is approximately
$V_0+\frac{\hbar}{L}\sqrt{\frac{2V_0}{m}}$
$V_0+\frac{\hbar}{L}\sqrt{\frac{V_0}{m}}$
$V_0+\frac{\hbar}{4L}\sqrt{\frac{V_0}{m}}$
$V_0+\frac{\hbar}{2L}\sqrt{\frac{V_0}{m}}$
\begin{align*}
V(x)&=V_0\cosh{\left(\frac{x}{L}\right)}\\
&=\frac{V_0}{2}\left(e^{x/L}+ e^{-x/L}\right)\\
&=\frac{V_0}{2}\left\{\left[1+\frac{x}{L}+\frac{1}{2!}\left(\frac{x}{L}\right)^2+\cdots\right]\right.\\
&\left. +\left[1-\frac{x}{L}+\frac{1}{2!}\left(\frac{x}{L}\right)^2-\cdots\right]\right\}\\
&=\frac{V_0}{2}\left\{\left[2+2\frac{1}{2!}\left(\frac{x}{L}\right)^2+\cdots\right]\right\}\\
&=V_0+\frac{V_0}{2}\left(\frac{x}{L}\right)^2\\
&=V_0+\frac{1}{2}\frac{V_0}{L^2}x^2\\
&=V_0+\frac{1}{2}kx^2
\end{align*}
where $k=\frac{V_0}{L^2}$. Thus, particle is under the action of constant potential $V_0$ and simple harmonic potential
$\frac{1}{2}kx^2$. For free particle motion lowest energy is $V_0$ and for harmonic potential lowest energy is $\frac{1}{2}\hbar\omega$.
Hence, ground state energy is
\begin{align*}
E&=V_0+\frac{1}{2}\hbar\omega\\
&=V_0+\frac{1}{2}\hbar\sqrt{\frac{k}{m}}\\
&=V_0+\frac{1}{2}\hbar\sqrt{\frac{V_0}{L^2m}}
\end{align*}
Hence, answer is (D)
No comments :
Post a Comment