Physics Resonance: Problem set 28 -->

Notice

Saturday, 19 November 2016

Problem set 28

  1. The solution of the differential equation $\frac{dx}{dt}=2\sqrt{1-x^2}$, with initial condition $x=0$ at $t=0$ is
    1. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ \sinh{2t},\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
    2. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{2}\\ 1,\quad t\geq\frac{\pi}{2} \end{cases} \end{align*}
    3. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ 1,\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
    4. $x=1-\cos{2t},\quad t\geq 0$
  2. Given a uniform magnetic field $\vec B=B_0\hat k$ (where $B_0$ is a constant), a possible choice for the magnetic vector potential $\vec A$ is
    1. $B_0y\hat i$
    2. $-B_0y\hat i$
    3. $B_0(x\hat j+y\hat i)$
    4. $B_0(x\hat i-y\hat j)$
  3. Consider a charge $Q$ at the origin of 3-dimensional coordinate system. The flux of the electric field through the curved surface of a cone that has a height $h$ and a circular base of radius $R$ is
    1. $\frac{Q}{\epsilon_0}$
    2. $\frac{Q}{2\epsilon_0}$
    3. $\frac{hQ}{R\epsilon_0}$
    4. $\frac{QR}{2h\epsilon_0}$
  4. A Hermitian operator $\hat O$ has two normalised eigenstates $|1 > $ and $|2 > $ with eigenvalues $1$ and $2$, respectively. The two states $|u > =\cos\theta|1 > +\sin\theta|2 > $ and $|v > =\cos\phi|1 > +\sin\phi|2 > $ are such that $ < v|\hat O|v > =7/4$ and $ < u|v > =0$. Which of the following are possible values of $\theta$ and $\phi$?
    1. $\theta=-\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$
    2. $\theta=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$
    3. $\theta=-\frac{\pi}{4}$ and $\phi=\frac{\pi}{4}$
    4. $\theta=\frac{\pi}{3}$ and $\phi=-\frac{\pi}{6}$
  5. The ground state energy of a particle of mass $m$ in the potential $V(x)=V_0\cosh{\left(\frac{x}{L}\right)}$, where $L$ and $V_0$ are constants (and $V_0>>\frac{\hbar^2}{2mL^2}$) is approximately
    1. $V_0+\frac{\hbar}{L}\sqrt{\frac{2V_0}{m}}$
    2. $V_0+\frac{\hbar}{L}\sqrt{\frac{V_0}{m}}$
    3. $V_0+\frac{\hbar}{4L}\sqrt{\frac{V_0}{m}}$
    4. $V_0+\frac{\hbar}{2L}\sqrt{\frac{V_0}{m}}$

No comments :

Post a Comment