Physics Resonance: Problem set 21 -->

Notice

Monday, 7 November 2016

Problem set 21

  1. Four charges (two $+q$ and two $-q$) are kept fixed at the four vertices of a square of side $a$ as shown
    At the point $P$ which is at a distance $R$ from the centre $( R > > a)$, the potential is proportional to
    1. $1/R$
    2. $1/R^2$
    3. $1/R^3$
    4. $1/R^4$
  2. A point charge $q$ of mass $m$ is kept at a distance $d$ below a grounded infinite conducting sheet which lies in the $xy$-plane. For what value of $d$ will the charge remains stationary?
    1. $q/4\sqrt{mg\pi\epsilon_0}$
    2. $q/\sqrt{mg\pi\epsilon_0}$
    3. There is no finite value of $d$
    4. $\sqrt{mg\pi\epsilon_0}/q$
  3. The wave function of a state of the hydrogen atom is given by ${\scriptstyle\Psi=\psi_{200}+2\psi_{211}+3\psi_{210}+\sqrt{2}\psi_{21-1}}$, where $\psi_{nlm}$ is the normalized eigenfunction of the state with quantum numbers $n,l$ and $m$ in the usual notation. The expectation value of $L_z$ in the state $\Psi$ is
    1. $15\hbar/16$
    2. $11\hbar/16$
    3. $3\hbar/8$
    4. $\hbar/8$
  4. The energy eigenvalues of a particle in the potential $V(x) =\frac{1}{2}m\omega^2x^2-ax$ are
    1. $E_n=\left(n+\frac{1}{2}\right)\hbar\omega-\frac{a^2}{2m\omega^2}$
    2. $E_n=\left(n+\frac{1}{2}\right)\hbar\omega+\frac{a^2}{2m\omega^2}$
    3. $E_n=\left(n+\frac{1}{2}\right)\hbar\omega-\frac{a^2}{m\omega^2}$
    4. $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$
  5. If a particle is represented by the normalized wave function \begin{align*} \psi(x)=\begin{cases}\frac{\sqrt{15}\left(a^2-x^2\right)}{4a^{5/2}}&{\scriptstyle\text{for} -a < x < a}\\ 0 &\text{otherwise} \end{cases} \end{align*} the uncertainty $\Delta p$ in its momentum is
    1. $2\hbar/5a$
    2. $5\hbar/2a$
    3. $\sqrt{10}\hbar/a$
    4. $\sqrt{5}\hbar/\sqrt{2}a$

No comments :

Post a Comment