- The radius of the Fermi sphere of free electrons in a monovalent metal with an fcc structure, in which the volume of the unit cell is $a^3$, is
- $\left(\frac{12\pi^2}{a^3}\right)^{1/3}$
- $\left(\frac{3\pi^2}{a^3}\right)^{1/3}$
- $\left(\frac{\pi^2}{a^3}\right)^{1/3}$
- $\left(\frac{1}{a}\right)^{1/3}$
- Deviation from Rutherford scattering formula for $\alpha$-particle scattering gives an estimate of:
- Size of an atom
- Thickness of target
- Size of a nucleus
- half life of $\alpha$-emitter
- If the critical magnetic field for aluminium is $7.9\times 10^3 A/m$, the critical current which can flow through long thin superconducting wire of aluminium of diameter $1\times10^{-3}m$ is
- 5.1 A
- 1.6 A
- 4.0 A
- 2.48 A
- An elemental dielectric has a dielectric constant $\epsilon=12$ and it contains $5\times10^{18} atoms/m^3$. Its electronic polarizability in uints of $FM^2$ is
- $4.17\times10^{-30}$
- $8.34\times10^{-30}$
- $6.32\times10^{-30}$
- $12.64\times10^{-30}$
- Mangetite $(Fe_3O_4)$ has a cubic structure with a lattice constant of $8.4A^o$. The saturation magnetization in this material in units of A/m is :
- $6.2\times10^5$
- $6.2\times10^6$
- $12.4\times10^6$
- $12.4\times10^5$
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Wednesday, 30 November 2016
Problem set 33
Monday, 28 November 2016
Problem set 32
- The Hamiltonian of a particle of unit mass moving in the xy-plane is given to be: $H = xp_x- yp_y -\frac{1}{2}x^2 +\frac{1}{2} y^2$ in suitable units. The initial values are given to be $(x(0),y(0)) = (1,1)$ and $(p_x(0),p_y(0) )=(\frac{1}{2}, -\frac{1}{2})$. During the motion, the curves traced out by the particles in the xy-plane and the $p_xp_y$-plane are
- both straight lines
- a straight line and a hyperbola respectively
- a hyperbola and an ellipse, respectively
- both hyperbolas
- A static, spherically symmetric charge distribution is given by $\rho(r) = \frac{A}{r} e^{-Kr}$ where $A$ and $K$ are positive constants. The electrostatic potential corresponding to this charge distribution varies with $r$ as
- $re^{-Kr}$
- $\frac{1}{r} e^{-Kr}$
- $\frac{1}{r^2} e^{-Kr}$
- $\frac{1}{r} (1-e^{-Kr})$
- Band-pass and band-reject filters can be implemented by combining a low pass and a high pass filter in series and in parallel, respectively. If the cut-off frequencies of the low pass and high pass filters are $\omega_0^{LP}$ and $\omega_0^{HP}$ , respectively, the condition required to implement the band-pass and band-reject filters are, respectively,
- $\omega_0^{HP}<\omega_0^{LP}$ and $\omega_0^{HP}<\omega_0^{LP}$
- $\omega_0^{HP}<\omega_0^{LP}$ and $\omega_0^{HP}>\omega_0^{LP}$
- $\omega_0^{HP}>\omega_0^{LP}$ and $\omega_0^{HP}<\omega_0^{LP}$
- $\omega_0^{HP}>\omega_0^{LP}$ and $\omega_0^{HP}>\omega_0^{LP}$
- Non-interacting bosons undergo Bose-Einstein Condensation (BEC) when trapped in a three-dimensional isotropic simple harmonic potential. For BEC to occur, the chemical potential must be equal to
- $\hbar\omega/2$
- $\hbar\omega$
- $3\hbar\omega/2$
- $0$
- Linearly independent solution of the differential equation $$\frac{d^2y}{dx^2}+3\frac{dy}{dx}+2y=0$$ are:
- $e^{-x}$, $e^{-2x}$
- $e^{-x}$, $e^{2x}$
- $e^{-2x}$, $e^{x}$
- $e^{2x}$, $e^{x}$
$\nabla^2V$ must be proportional to $\frac{1}{r} e^{-Kr}$. Taking $\nabla^2=\frac{d^2}{dr^2}+\frac{2}{r}\frac{d}{dr}$, for the option (B) we get $\nabla^2\left(\frac{1}{r} e^{-Kr}\right)=\frac{K^2}{r} e^{-Kr}$
Hence, option (B) is correct.
solutions are $e^{-x}$, $e^{-2x}$
Hence, answer is (A)
Friday, 25 November 2016
Problem set 31
- The two dimensional lattice of graphene is an arrangement of Carbon atoms forming a honeycomb lattice of lattice spacing $a$, as shown below. The Carbon atoms occupy the vertices.
- The Wigner-Seitz cell has an area of
- $2a^2$
- $\frac{\sqrt{3}}{2}a^2$
- $6\sqrt{3}a^2$
- $\frac{3\sqrt{3}}{2}a^2$
- The Bravais lattice for this array is a
- rectangular lattice with basis vectors $\vec d_1$ and $\vec d_2$
- rectangular lattice with basis vectors $\vec c_1$ and $\vec c_2$
- hexagonal lattice with basis vectors $\vec a_1$ and $\vec a_2$
- hexagonal lattice with basis vectors $\vec b_1$ and $\vec b_2$
- A narrow beam of X-rays with wavelength $1.5 A^\circ$ is reflected from an ionic crystal with an fcc lattice structure with a density of $3.32 gm cm^{-3}$. The molecular weight is $108 AMU$ (1 AMU $= 1.66 \times10^{-24} g$).
- The lattice constant is
- $6.00A^\circ$
- $4.56A^\circ$
- $4.00A^\circ$
- $2.56A^\circ$
- The sine of the angle corresponding to $(111)$
- $\sqrt{3}/4$
- $\sqrt{3}/8$
- $1/4$
- $1/8$
- If an electron is in the ground state of the hydrogen atom, the probability that its distance from the proton is more than one Bohr radius is approximately
- 0.68
- 0.48
- 0.28
- 0.91
Hence, answer is (D)
The Bravais lattice for this array is a hexagonal lattice with basis vectors $\vec b_1$ and $\vec b_2$.
Hence, answer is (D)
As, $N_0$ molecules have molecular weight $M$, $n$ molecules in the unit cell will have weight $\frac{n\times M}{N_0}$
$${\scriptstyle\text{Density of unit cell}=\frac{\text{weight of unit cell}}{\text{volume of unit cell}}}$$ $$\rho=\frac{n\times M}{N_0a^3}$$ \begin{align*} a^3&=\frac{n\times M}{N_0\rho}\\ &=\frac{4\times 108}{6.02322\times 10^{23}\times 3320}\\ &=6A^o \end{align*} Hence, answer is (A)
According to Bragg's law $$2d\sin\theta=\lambda\Rightarrow\sin\theta=\frac{\lambda}{2d}$$ $$d=\frac{a}{\sqrt{h^2+k^2+l^2}}$$ For (111) plane $d=\frac{a}{\sqrt{3}}$ $$\sin\theta=\frac{\lambda\sqrt{3}}{2a}=\frac{1.5\times\sqrt{3}}{2\times6}=\frac{\sqrt{3}}{8}$$ Hence, answer is (B)
Hence, answer is (A)
Wednesday, 23 November 2016
Problem set 30
- A particle is confined to the region $x \ge 0$ by a potential which increases linearly as $u(x) = u_0x$. The mean position of the particle at temperature $T$ is
- $\frac{k_BT}{u_0}$
- $\frac{(k_BT)^2}{u_0}$
- $\sqrt{\frac{k_BT}{u_0}}$
- $u_0k_BT$
- A plane electromagnetic wave is propagating in a loss-less dielectric. The electric field is given by $${\scriptstyle\vec E(x,y,z,t)=E_0(\hat x+A\hat z)\exp{\left[ik_0\left\{-ct+\left(x+\sqrt{3}z\right)\right\}\right]}}$$ where $c$ is the speed of light in vacuum, $E_0$ , $A$ and $k_0$ are constants and $\hat x$ and $\hat z$ are unit vectors along the x- and z-, axes. The relative dielectric constant of the medium, $\epsilon_r$ and the constant $A$ are
- $\epsilon_r=4$ and $A=-\frac{1}{\sqrt{3}}$
- $\epsilon_r=4$ and $A=+\frac{1}{\sqrt{3}}$
- $\epsilon_r=4$ and $A=\sqrt{3}$
- $\epsilon_r=4$ and $A=-\sqrt{3}$
- In a system consisting of two spin-$\frac{1}{2}$ particles labeled 1 and 2, let $\vec S^{(1)} = \frac{\hbar}{2}\vec\sigma^{(1)}$ and $\vec S^{(2)} = \frac{\hbar}{2}\vec\sigma^{(2)}$ denote the corresponding spin operators. Here $\vec\sigma\equiv (\sigma_x ,\sigma_y ,\sigma_z)$ and $\sigma_x ,\sigma_y ,\sigma_z$ are the three Pauli matrices.
- In the standard basis the matrices for the operators $ S^{(1)}_x S^{(2)}_y$ and $S^{(1)}_y S^{(2)}_x$ are, respectively,
- ${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}1&0\\0&-1\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-1&0\\0&1\end{pmatrix}}$
- ${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}i&0\\0&-i\end{pmatrix},\quad\frac{\hbar^2}{4}\begin{pmatrix}-i&0\\0&i\end{pmatrix}}$
- $${\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&i&0\\0&-i&0&0\\i&0&0&0\end{pmatrix}},$$$${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&0&0&-i\\0&0&-i&0\\0&i&0&0\\i&0&0&0\end{pmatrix}}$$
- $${\scriptscriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&1&0&0\\1&0&0&0\\0&0&0&-i\\0&0&i&0\end{pmatrix}},$$$${\scriptstyle\frac{\hbar^2}{4}\begin{pmatrix}0&-i&0&0\\i&0&0&0\\0&0&0&1\\0&0&1&0\end{pmatrix}}$$
- These two operators satisfy the relation
- ${\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=S^{(1)}_z S^{(2)}_z}$
- ${\scriptstyle\left\{S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right\}=0}$
- ${\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=iS^{(1)}_z S^{(2)}_z}$
- ${\scriptstyle\left[S^{(1)}_x S^{(2)}_y,S^{(1)}_y S^{(2)}_x\right]=0}$
- The radius of $^{64}_{29}Cu$ nucleus is measured to be $4.8\times10^{-13} cm$.
- The radius of $^{27}_{12}Mg$ nucleus can be estimated to be
- $2.86\times10^{-13} cm$
- $5.2\times10^{-13} cm$
- $3.6\times10^{-13} cm$
- $8.6\times10^{-13} cm$
- The root-mean square (rms)- energy of a nucleon in a nucleus of atomic number $A$ in its ground state varies as:
- $A^{4/3}$
- $A^{1/3}$
- $A^{-1/3}$
- $A^{-2/3}$
The root-mean square (rms)- energy of a nucleon in a nucleus of atomic number $A$ in its ground state varies as $A^{-1/3}$
Hence, answer is (C)
Monday, 21 November 2016
Problem set 29
- Let $\psi_{nlm}$ denote the eigenstates of a hydrogen atom in the usual notation. The state $\frac{1}{5}\left[2\psi_{200}-3\psi_{211}+\sqrt{7}\psi_{210}-\sqrt{5}\psi_{21-1}\right]$ is an eigenstate of
- $L^2$ but not of the Hamiltonian or $L_z$
- the Hamiltonian, but not of $L^2$ or $L_z$
- the Hamiltonian, $L^2$ and $L_z$
- $L^2$ and $L_z$, but not of the Hamiltonian
- The Hamiltonian for a spin-$1/2$ particle at rest is given by $H=E_0(\sigma_z+\alpha\sigma_x)$, where $\sigma_x$ and $\sigma_z$ are Pauli spin matrices and $E_0$ and $\alpha$ are constants. The eigenvalues of this Hamiltonian are
- $\pm E_0\sqrt{1+\alpha^2}$
- $\pm E_0\sqrt{1-\alpha^2}$
- $E_0$ (doubly degenerate)
- $E_0\left(1\pm\frac{1}{2}\alpha^2\right)$
- For a system of independent non-interacting one-dimensional oscillators, the value of the free energy per oscillator, in the limit $T\rightarrow0$, is
- $\frac{1}{2}\hbar\omega$
- $\hbar\omega$
- $\frac{3}{2}\hbar\omega$
- $0$
- If the reverse bias voltage of a silicon varactor is increased by a factor of 2, the corresponding transition capacitance
- increases by a factor of $\sqrt{2}$
- increases by a factor of $2$
- decreases by a factor of $\sqrt{2}$
- decreases by a factor of $2$
- A cavity contains black body radiation in equilibrium at temperature $T$. The specific heat per unit volume of the photon gas in the cavity is of the form $C_v = \gamma T^3$,where $\gamma$ is a constant. The cavity is expanded to twice its original volume and then allowed to equilibrate at the same temperature $T$. The new internal energy per unit volume is
- $4\gamma T^4$
- $2\gamma T^4$
- $\gamma T^4$
- $\gamma T^4/4$
Hence, option (B) is correct.
Saturday, 19 November 2016
Problem set 28
- The solution of the differential equation $\frac{dx}{dt}=2\sqrt{1-x^2}$, with initial condition $x=0$ at $t=0$ is
- \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ \sinh{2t},\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
- \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{2}\\ 1,\quad t\geq\frac{\pi}{2} \end{cases} \end{align*}
- \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ 1,\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
- $x=1-\cos{2t},\quad t\geq 0$
- Given a uniform magnetic field $\vec B=B_0\hat k$ (where $B_0$ is a constant), a possible choice for the magnetic vector potential $\vec A$ is
- $B_0y\hat i$
- $-B_0y\hat i$
- $B_0(x\hat j+y\hat i)$
- $B_0(x\hat i-y\hat j)$
- Consider a charge $Q$ at the origin of 3-dimensional coordinate system. The flux of the electric field through the curved surface of a cone that has a height $h$ and a circular base of radius $R$ is
- $\frac{Q}{\epsilon_0}$
- $\frac{Q}{2\epsilon_0}$
- $\frac{hQ}{R\epsilon_0}$
- $\frac{QR}{2h\epsilon_0}$
- A Hermitian operator $\hat O$ has two normalised eigenstates $|1 > $ and $|2 > $ with eigenvalues $1$ and $2$, respectively. The two states $|u > =\cos\theta|1 > +\sin\theta|2 > $ and $|v > =\cos\phi|1 > +\sin\phi|2 > $ are such that $ < v|\hat O|v > =7/4$ and $ < u|v > =0$. Which of the following are possible values of $\theta$ and $\phi$?
- $\theta=-\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$
- $\theta=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$
- $\theta=-\frac{\pi}{4}$ and $\phi=\frac{\pi}{4}$
- $\theta=\frac{\pi}{3}$ and $\phi=-\frac{\pi}{6}$
- The ground state energy of a particle of mass $m$ in the potential $V(x)=V_0\cosh{\left(\frac{x}{L}\right)}$, where $L$ and $V_0$ are constants (and $V_0>>\frac{\hbar^2}{2mL^2}$) is approximately
- $V_0+\frac{\hbar}{L}\sqrt{\frac{2V_0}{m}}$
- $V_0+\frac{\hbar}{L}\sqrt{\frac{V_0}{m}}$
- $V_0+\frac{\hbar}{4L}\sqrt{\frac{V_0}{m}}$
- $V_0+\frac{\hbar}{2L}\sqrt{\frac{V_0}{m}}$
(A)$\vec B=\vec\nabla \times B_0y\hat i=-B_0\hat k$
(B)$\vec B=\vec\nabla \times (-B_0y\hat i)=B_0\hat k$
(C)$\vec B=\vec\nabla \times (B_0(x\hat j+y\hat i))=0$
(D)$\vec B=\vec\nabla \times (B_0(x\hat i-y\hat j))=2B_0\hat k$
Hence, answer is (B)
Hence, answer is (B)
Friday, 18 November 2016
Problem set 27
- The Fourier transform of $f(x)$ is $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$. If $f(x)=\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)$, where $\delta(x)$ is the Dirac delta-function (and prime denotes derivative), what is $\tilde{f}(k)$?
- $\alpha+i\beta k+i\gamma k^2$
- $\alpha+\beta k-\gamma k^2$
- $\alpha-i\beta k-\gamma k^2$
- $i\alpha+\beta k-i\gamma k^2$
- A particle moves in three-dimensional space in a central potential $V(r)=kr^4$, where $k$ is a constant. The angular frequency $\omega$ for a circular orbit depends on its radius $R$ as
- $\omega\propto R$
- $\omega\propto R^{-1}$
- $\omega\propto R^{1/4}$
- $\omega\propto R^{-2/3}$
- The Lagrangian of a system is given by ${\scriptstyle L=\frac{1}{2}m\dot q_1^2+2m\dot q_2^2-k\left(\frac{5}{4}q_1^2+2q_2^2-2q_1q_2\right)}$ where $m$ and $k$ are positive constants. The frequencies of its normal modes are
- $\sqrt{\frac{k}{2m}}\sqrt{\frac{3k}{m}}$
- $\sqrt{\frac{k}{2m}}(13\pm\sqrt{73})$
- $\sqrt{\frac{5k}{2m}}\sqrt{\frac{k}{m}}$
- $\sqrt{\frac{k}{2m}}\sqrt{\frac{6k}{m}}$
- Consider a particle of mass $m$ moving with a speed $v$. If $T_R$ denotes the relativistic kinetic energy and $T_N$ its non-relativistic approximation, then the value of $(T_R-T_N)/T_R$ for $v=0.01\:c$, is
- $1.25\times10^{-5}$
- $5.0\times10^{-5}$
- $7.5\times10^{-5}$
- $1.0\times10^{-4}$
- Two masses, $m$ each, are placed at the points $(x,y)=(a,a)$ and $(-a,-a)$. Two masses, $2m$ each, are placed at the points $(a,-a)$ and $(-a,a)$. The principal moments of inertia of the system are
- $2ma^2$, $4ma^2$
- $4ma^2$, $8ma^2$
- $4ma^2$, $4ma^2$
- $8ma^2$, $8ma^2$
For a two-dimensional case, we have
$${\scriptstyle{I}=\begin{pmatrix}
\sum\limits_\alpha m_\alpha\left(x_{\alpha,2}^2\right)&-\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,2}\\
-\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,1}&\sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2\right)
\end{pmatrix}
}$$
\begin{align*}
I_{11}&= \sum\limits_\alpha m_\alpha\left(x_{\alpha,2}^2\right)\\
&=ma^2+ma^2+2ma^2+2ma^2\\
&=6ma^2
\end{align*}
\begin{align*}
I_{12}&= -\sum\limits_\alpha m_\alpha x_{\alpha,1}x_{\alpha,2}\\
&=-(ma^2+ma^2-2ma^2-2ma^2)\\
&=2ma^2
\end{align*}
\begin{align*}
I_{21}&= -\sum\limits_\alpha m_\alpha x_{\alpha,2}x_{\alpha,1}\\
&=-(ma^2+ma^2-2ma^2-2ma^2)\\
&=2ma^2
\end{align*}
\begin{align*}
I_{22}&= \sum\limits_\alpha m_\alpha\left(x_{\alpha,1}^2\right)\\
&=ma^2+ma^2+2ma^2+2ma^2\\
&=6ma^2
\end{align*}
$${I}=\begin{pmatrix}
6ma^2&2ma^2\\
2ma^2&6ma^2
\end{pmatrix}
$$
The principal moments of inertia are obtained by solving
$${I}=\begin{vmatrix}
6ma^2-\lambda&2ma^2\\
2ma^2&6ma^2-\lambda
\end{vmatrix}=0$$
Solving this determinant we get
$$\lambda^2-12ma^2\lambda+32m^2a^4=0$$
Solving this quadratic equation in $\lambda$ we get,
$\lambda_1=8ma^2$ and $\lambda_2=4ma^2$
Hence, answer is (B)
Wednesday, 16 November 2016
Problem set 26
- The free energy difference between the superconducting and the normal states of a material is given by $\Delta F = F_s-F_N =\alpha |\psi|^2 + \frac{\beta}{2}|\psi|^4$, where $\psi$ is an order parameter and $\alpha$ and $\beta$ are constants such that $\alpha > 0$ in the normal and $\alpha < 0$ in the superconducting state, while $\beta > 0$ always. The minimum value of $\Delta F$ is
- $-\alpha^2/\beta$
- $-\alpha^2/2\beta$
- $-3\alpha^2/\beta$
- $-5\alpha^2/\beta$
- Consider a hydrogen atom undergoing a $2P\rightarrow 1S$ transition. The lifetime $t_{sp}$ of the $2P$ state for spontaneous emission is $1.6 ns$ and the energy difference between the levels is $10.2eV$. Assuming that the refractive index of the medium $n_0 = 1$, the ratio of Einstein coefficients for stimulated and spontaneous emission $B_{21}(\omega)/A_{21}(\omega)$ is given by
- $0.683\times10^{12} m^3J^{-1}s^{-1}$
- $0.146\times10^{-12} Jsm^{-3}$
- $6.83\times10^{12} m^3J^{-1}s^{-1}$
- $1.46\times10^{-12} Jsm^{-3}$
- In the scattering of some elementary particles, the scattering cross-section is found to depend on the total energy and the fundamental constants $h$ (Planck’s constant) and $c$ (the speed of light in vacuum). Using dimensional analysis, the dependence of $\sigma$ on these quantities is given by
- $\sqrt{\frac{hc}{E}}$
- $\frac{hc}{E^{3/2}}$
- $\left(\frac{hc}{E}\right)^2$
- $\frac{hc}{E}$
- If $y=\frac{1}{\tanh x}$, then $x$ is
- $\ln{\left(\frac{y+1}{y-1}\right)}$
- $\ln{\left(\frac{y-1}{y+1}\right)}$
- $\ln{\sqrt{\frac{y-1}{y+1}}}$
- $\ln{\sqrt{\frac{y+1}{y-1}}}$
- The function $\frac{z}{\sin{\pi z^2}}$ of a complex variable $z$ has
- a simple pole at $0$ and poles of order $2$ at $\pm\sqrt{n}$ for $n=1,2,3,\dots$
- a simple pole at $0$ and poles of order $2$ at $\pm\sqrt{n}$ and $\pm i\sqrt{n}$ for $n=1,2,3,\dots$
- poles of order $2$ at $\pm\sqrt{n}$ for $n=0,1,2,3,\dots$
- poles of order $2$ at $\pm n$ for $n=0,1,2,3,\dots$
Monday, 14 November 2016
Problem set 25
- The energies in the ground state and first excited state of a particle of mass $m =\frac{1}{2}$ in a potential $V(x)$ are $-4$ and $-1$, respectively, (in units in which $\hbar = 1$ ). If the corresponding wavefunctions are related by $\psi_1(x)=\psi_0(x) \sinh x$, then the ground state eigenfunction is
- $\psi_0(x)=\sqrt{sech~ x}$
- $\psi_0(x)=sech~ x$
- $\psi_0(x)=sech^2~ x$
- $\psi_0(x)=sech^3~ x$
- The perturbation \begin{align*} H'=\begin{cases} b(a-x),&-a < x < a\\ 0&\text{otherwise} \end{cases} \end{align*} acts on a particle of mass $m$ confined in an infinite square well potential \begin{align*} V(x)=\begin{cases} 0,&-a < x < a\\ \infty&\text{otherwise} \end{cases} \end{align*} The first order correction to the ground-state energy of the particle is
- $\frac{ba}{2}$
- $\frac{ba}{\sqrt{2}}$
- $2ba$
- $ba$
- Let $|0>$ and $|1>$ denote the normalized eigenstates corresponding to the ground and the first excited states of a one-dimensional harmonic oscillator. The uncertainty $\Delta x$ in the state $\frac{1}{\sqrt{2}}\left(|0>+|1>\right)$ is
- $\Delta x=\sqrt{\hbar/2m\omega}$
- $\Delta x=\sqrt{\hbar/m\omega}$
- $\Delta x=\sqrt{2\hbar/m\omega}$
- $\Delta x=\sqrt{\hbar/4m\omega}$
- What would be the ground state energy of the Hamiltonian $H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x)$ if variational principle is used to estimate it with the trial wavefunction $\psi(x)= Ae^{-bx^2}$ with $b$ as the variational parameter? [Hint: ${\scriptstyle\int_{-\infty}^{\infty} x^{2n} e^{-2bx^2}\:dx = (2b)^{-n-\frac{1}{2}}\Gamma\left(n+\frac{1}{2}\right)}$]
- $-m\alpha^2/2\hbar^2$
- $-2m\alpha^2/\pi\hbar^2$
- $-m\alpha^2/\pi\hbar^2$
- $m\alpha^2/\pi\hbar^2$
- A given quantity of gas is taken from the state $A \rightarrow C$ reversibly, by two paths, $A\rightarrow C$
directly and $A\rightarrow B\rightarrow C$ as shown in the figure below.
During the process $A\rightarrow C$ the work done by the gas is $100 J$ and the heat absorbed is $150 J$. If during the process $A\rightarrow B\rightarrow C$ the workdone by the gas is $30 J$, the heat absorbed is - 20 J
- 80 J
- 220 J
- 280 J
Saturday, 12 November 2016
Problem set 24
- The Hamiltonian of a simple pendulum consisting of a mass $m$ attached to a massless string of length $l$ is $H = \frac{p_\theta^2}{2ml^2}+ mgl(1- \cos\theta)$. If $L$ denotes the Lagrangian, the value $\frac{dL}{dt}$ is:
- $-\frac{2g}{l}p_\theta\sin\theta$
- $-\frac{g}{l}p_\theta\sin{2\theta}$
- $\frac{g}{l}p_\theta\cos{\theta}$
- $lp_\theta^2\cos{\theta}$
- Two bodies of equal mass $m$ are connected by a massless rigid rod of length $l$ lying in the XY-plane with the centre of the rod at the origin. If this system is rotating about the $z$-axis with a frequency $\omega$, its angular momentum is
- $ml^2\omega/4$
- $ml^2\omega/2$
- $ml^2\omega$
- $2ml^2\omega$
- An infinite solenoid with its axis of symmetry along the z-direction carries a steady current $I$. The vector potential $\vec A$ at a distance $R$ from the axis
- is constant inside and varies as $R$ outside the solenoid
- varies as $R$ inside and is constant outside the solenoid
- varies as $\frac{1}{R}$ inside and as $R$ outside the solenoid
- varies as $R$ inside and as $\frac{1}{R}$ outside the solenoid
- Consider an infinite conducting sheet in the xy-plane with a time dependent cunent density $Kt\hat i$, where $K$ is a constant. The vector potential at $(x, y,z)$ is given by $\vec A=\frac{\mu_0K}{4c}(ct-z)^2\hat i$. The magnetic field $\vec B$ is
- $\frac{\mu_0Kt}{2}\hat j$
- $-\frac{\mu_0Kz}{2c}\hat j$
- $-\frac{\mu_0K}{2c}(ct-z)\hat i$
- $-\frac{\mu_0K}{2c}(ct-z)\hat j$
- When a charged particle emits electromagnetic radiation, the electric field $\vec E$ and the Poynting vector $\vec S = \frac{1}{\mu_0} \vec E\times\vec B$ at a large distance $r$ from the emitter vary as $\frac{1}{r^n}$ and $\frac{1}{r^m}$ respectively. Which of the following choices for $n$ and $m$ are correct?
- $n = 1$ and $m=1$
- $n = 2$ and $m=2$
- $n = 1$ and $m=2$
- $n = 2$ and $m=4$
Magnetic filed inside the solenoid is $B=\mu_0 n I$, where $n$ is number of turns per unit length, and, $I$ is current flowing through the wire. Magnetic filed outside the solenoid is zero.
Vector potential inside the solenoid:
Now, according to Stoke's law, we have $$\oint \vec A\cdot d\vec l=\int_S\left(\nabla\times\vec A\right)\cdot d\vec S$$ But $\left(\nabla\times\vec A\right)=\vec B$ $$\oint \vec A\cdot d\vec l=\int_S\vec B\cdot d\vec S=\Phi_B=flux$$ Let us calculate flux $\Phi_B$. For this let us consider a circular path of radius $R$ centered along its axis. The flux through the circular area is $$\Phi_B=\pi R^2B=\pi R^2\mu_0 n I$$ Hence, $$\oint \vec A\cdot d\vec l=\pi R^2\mu_0 n I$$ But, $\oint \vec A\cdot d\vec l=2\pi R A_\Phi$, this is because $\vec A$ is along the direction of current which is circumferential. $$2\pi R A_\Phi=\pi R^2\mu_0 n I$$ $$A_\Phi=\mu_0 n I\frac{R}{2}$$
Vector potential outside the solenoid:
Let us consider the point $R>r$. The flux through circular area is $$\Phi_B=\pi r^2B=\pi r^2\mu_0 n I$$ $$\oint \vec A\cdot d\vec l=\pi r^2\mu_0 n I$$ But, $\oint \vec A\cdot d\vec l=2\pi R A_\Phi$ $$2\pi R A_\Phi=\pi r^2\mu_0 n I$$ $$A=\mu_0 n I\frac{r^2}{2R}$$
Hence, $\vec A$ varies as $R$ inside and as $\frac{1}{R}$ outside the solenoid
Hence, answer is (D)
Hence, answer is (C)
Thursday, 10 November 2016
Problem set 23
- A diode $D$ as shown in the circuit has an $i-V$ relation that can be approximated by \begin{align*} i_{_D}=\begin{cases} v^2_{_D}+2v_{_D},&\text{for }v_{_D}>0\\ 0,&\text{for }v_{_D}\leq 0 \end{cases} \end{align*} The value of $v_{_D}$ in the circuit is
- $(-1+\sqrt{11})$
- $8V$
- $5V$
- $2V$
- The Taylor expansion of the function $\ln{(\cosh x)}$, where $x$ is real, about the point $x= 0$ starts with the following terms:
- $-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots$
- $\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots$
- $-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
- $\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
- Given $2\times2$ unitary matrix $U$ satisfying $U^\dagger U=UU^\dagger = 1$ with $\det U = e^{i\phi}$, one can construct a unitary matrix $V \:( V^\dagger V = VV^\dagger= 1)$ with $\det V=1$ from it by
- multiplying $U$ by $e^{i\phi/2}$
- multiplying any single element of $U$ by $e^{i\phi}$
- multiplying any row or column of $U$ by $e^{i\phi/2}$
- multiplying $U$ by $e^{i\phi}$
- The value of the integral $\int_C \frac{z^3dz}{z^2-5z+6}$, where $C$ is a closed contour defined by the equation $2|z|- 5 = 0$, traversed in the anti-clockwise direction, is
- $-16\pi i$
- $16\pi i$
- $8\pi i$
- $2\pi i$
- The function $f(x)$ obeys the differential equation $\frac{d^2f}{dx^2}-(3 - 2i)f = 0$ and satisfies the conditions $f(0) = 1$ and $f(x)\rightarrow \infty$ as $x\rightarrow 0$. The value of $f(\pi)$ is
- $e^{2\pi}$
- $e^{-2\pi}$
- $-e^{-2\pi}$
- $-e^{2\pi i}$
Hence, answer is (D)
Let us take option (A) i.e. multiplying $U$ by $e^{-i\phi/2}$ \begin{equation*} V=e^{-i\phi}U=\begin{pmatrix} e^{-i\phi/2}a&e^{-i\phi/2}b\\ -e^{i\phi/2}b^*&e^{i\phi/2}a^* \end{pmatrix} \end{equation*} Clearly, we get, $\det{V}=1$.
Hence, option (A) is correct
Wednesday, 9 November 2016
Problem set 22
- Given the usual canonical commutation relations, the commutator $[A,B]$ of $A=i(xp_y-yp_z)$ and $B=i(yp_z+zp_y)$ is
- $\hbar(xp_z-p_xz)$
- $-\hbar(xp_z-p_xz)$
- $\hbar(xp_z+p_xz)$
- $-\hbar(xp_z+p_xz)$
- The entropy of a system, $S$, is related to the accessible phase space volume $\Gamma$ by $S = k\ln \Gamma(E, N,V)$ where $E$, $N$ and $V$ are the energy, number of particles and volume respectively. From this one can conclude that $\Gamma$
- does not change during evolution to equilibrium
- oscillates during evolution to equilibrium
- is a maximum at equilibrium
- is a minimum at equilibrium
- Let $\Delta W$ be the work done in a quasistatic reversible thermodynamic process. Which of the following statements about $\Delta W$ is correct?
- $\Delta W$ is a perfect differential if the process is isothermal
- $\Delta W$ is a perfect differential if the process is adiabatic
- $\Delta W$ is always a perfect differential
- $\Delta W$ cannot be a perfect differential
- Consider a system of three spins $S_1$, $S_2$ and $S_3$ each of which can take values $+1$ and $-1$. The energy of the system is given by $E = -J\left[ S_1 S_2 + S_2 S_3 + S_3 S_1\right]$, where $J$ is a positive constant. The minimum energy and the corresponding number of spin configurations are, respectively,
- $J$ and 1
- $-3J$ and 1
- $-3J$ and 2
- $-6J$ and 2
- The minimum energy of a collection of 6 non-interacting electrons of spin-$\frac{1}{2}$ and mass $m$ placed in a one dimensional infinite square well potential of width $L$ is
- $14\pi^2\hbar^2/mL^2$
- $91\pi^2\hbar^2/mL^2$
- $7\pi^2\hbar^2/mL^2$
- $3\pi^2\hbar^2/mL^2$
According to first law of thermodynamics $$dU=dQ+dW$$ Here $dU$ is exact, but, $dQ$ and $dW$ are inexact. However, for adiabatic process $dQ=0$. Hence, we have $$dU=dW$$. As $dU$ is always exact, for adiabatic process, $dW$ is exact.
Hence answer (B) is correct.
Monday, 7 November 2016
Problem set 21
- Four charges (two $+q$ and two $-q$) are kept fixed at the four vertices of a square of side $a$ as shown At the point $P$ which is at a distance $R$ from the centre $( R > > a)$, the potential is proportional to
- $1/R$
- $1/R^2$
- $1/R^3$
- $1/R^4$
- A point charge $q$ of mass $m$ is kept at a distance $d$ below a grounded infinite conducting sheet which lies in the $xy$-plane. For what value of $d$ will the charge remains stationary?
- $q/4\sqrt{mg\pi\epsilon_0}$
- $q/\sqrt{mg\pi\epsilon_0}$
- There is no finite value of $d$
- $\sqrt{mg\pi\epsilon_0}/q$
- The wave function of a state of the hydrogen atom is given by ${\scriptstyle\Psi=\psi_{200}+2\psi_{211}+3\psi_{210}+\sqrt{2}\psi_{21-1}}$, where $\psi_{nlm}$ is the normalized eigenfunction of the state with quantum numbers $n,l$ and $m$ in the usual notation. The expectation value of $L_z$ in the state $\Psi$ is
- $15\hbar/16$
- $11\hbar/16$
- $3\hbar/8$
- $\hbar/8$
- The energy eigenvalues of a particle in the potential $V(x) =\frac{1}{2}m\omega^2x^2-ax$ are
- $E_n=\left(n+\frac{1}{2}\right)\hbar\omega-\frac{a^2}{2m\omega^2}$
- $E_n=\left(n+\frac{1}{2}\right)\hbar\omega+\frac{a^2}{2m\omega^2}$
- $E_n=\left(n+\frac{1}{2}\right)\hbar\omega-\frac{a^2}{m\omega^2}$
- $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$
- If a particle is represented by the normalized wave function \begin{align*} \psi(x)=\begin{cases}\frac{\sqrt{15}\left(a^2-x^2\right)}{4a^{5/2}}&{\scriptstyle\text{for} -a < x < a}\\ 0 &\text{otherwise} \end{cases} \end{align*} the uncertainty $\Delta p$ in its momentum is
- $2\hbar/5a$
- $5\hbar/2a$
- $\sqrt{10}\hbar/a$
- $\sqrt{5}\hbar/\sqrt{2}a$
For monopole $E\propto 1/r^2$ and $V\propto 1/r$
For dipole $E\propto 1/r^3$ and $V\propto 1/r^2$
For quadrupole $E\propto 1/r^4$ and $V\propto 1/r^3$
For octapole $E\propto 1/r^5$ and $V\propto 1/r^4$
Hence, answer is (C).
Sunday, 6 November 2016
Problem set 20
- Let $v$, $p$ and $E$ denote the speed, the magnitude of the momentum, and the energy of a free particle of rest mass $m$. Then
- $dE/dp=constant$
- $p=mv$
- $v=cp/\sqrt{p^2+m^2c^2}$
- $E=mc^2$
- A binary star system consists of two stars $S_1$ and $S_2$, with masses $m$ and $2m$, respectively, separated by a distance $r$. If both $S_1$ and $S_2$ individually follow circular orbits around the centre of mass with instantaneous speeds $V_1$ and $V_2$ respectively, the speeds ratio $V_1/V_2$ is
- $\sqrt{2}$
- 1
- 1/2
- 2
- Three charges are located on the circumference of a circle of radius $R$ as shown in the figure below. The two charges $Q$ subtend an angle $90^o$ at the centre of the circle. The charge $q$ is symmetrically placed with respect to the charges $Q$. If the electric field at the centre of the circle is zero, what is the magnitude of $Q$?
- $q/\sqrt{2}$
- $\sqrt{2}q$
- $2q$
- $2q$
- Consider a hollow charged shell of inner radius $a$ and outer radius $b$. The volume charge density is $\rho(r) =\frac{k}{r^2}$ ($k$ is a constant) in the region $a < r < b$. The magnitude of the electric field produced at distance $r > a$ is
- $\frac{k(b-a)}{\epsilon_0r^2}$ for all $r > a$
- $\frac{k(b-a)}{\epsilon_0r^2}$ for $a < r < b$ and $\frac{kb}{\epsilon_0r^2}$ for $r > b$
- $\frac{k(r-a)}{\epsilon_0r^2}$ for $a < r < b$ and $\frac{k(b-a)}{\epsilon_0r^2}$ for $r > b$
- $\frac{k(r-a)}{\epsilon_0a^2}$ for $a < r < b$ and $\frac{k(b-a)}{\epsilon_0a^2}$ for $r > b$
- Consider the interference of two coherent electromagnetic waves whose electric field vectors are given by $\vec E_1 = \hat i E_0 \cos{(\omega t+\phi)}$ and $\vec E_2 = \hat j E_0 \cos{(\omega t+\phi)}$ where $\phi$ is the phase difference. The intensity of the resulting wave is given by $\frac{\epsilon_0}{2}\left < E^2\right >$, where $\left < E^2\right > $ is the time average of $E^2$. The total intensity is
- $0$
- $\epsilon_0E_0^2$
- $\epsilon_0E_0^2\sin^2{\phi}$
- $\epsilon_0E_0^2\cos^2{\phi}$
The rest mass energy and kinetic energy of particle are $mc^2$ and $K=\frac{mc^2}{\sqrt{1-v^2/c^2}}-mc^2$, respectively.
Here, option (D) is wrong, because, total energy $E$, is sum of kinetic energy plus rest mass energy i.e. $E=\frac{mc^2}{\sqrt{1-v^2/c^2}}$.
Option (A) is wrong, because, velocity is involved in the expression for $E$.
For region $a\leq r\leq b$, using Gauss law, we have, $$\int\vec E\cdot d\vec s=\frac{q_{enclosed}}{\epsilon_0}$$ \begin{align*} E\;4\pi r^2&=\frac{1}{\epsilon_0}\int_a^r\rho\:dV\\ &=\frac{1}{\epsilon_0}\int_a^r\frac{k}{r^2}\:4\pi r^2\;dr\\ &=\frac{4\pi k}{\epsilon_0}(r-a) \end{align*} $$E=\frac{k(r-a)}{\epsilon_0 r^2}$$ For region $r > b$, using Gauss law, we have, $$\int\vec E\cdot d\vec s=\frac{q_{enclosed}}{\epsilon_0}$$ \begin{align*} E\;4\pi r^2&=\frac{1}{\epsilon_0}\int_a^b\rho\:dV\\ &=\frac{1}{\epsilon_0}\int_a^b\frac{k}{r^2}\:4\pi r^2\;dr\\ &=\frac{4\pi k}{\epsilon_0}(b-a) \end{align*} $$E=\frac{k(b-a)}{\epsilon_0 r^2}$$ Hence, answer is (C)