- The transient response of an electronic circuit is tested by giving the following wave form at the input:
- Sinusoidal
- Square
- Triangular
- Saw-tooth
- Which of the following effects manifests particle nature of light?
- Photo electric effect
- Blackbody radiation
- Interference
- Diffraction
- A ruled grating having 1000 grooves per mm is used for diffraction. If light of wavelength 300 nm is incident at right angle and if \theta is the diffraction angle, \sin\theta for first order diffraction will be equal to:
- 0.1
- 0.3
- 0.2
- 0.5
- The conventional unit cell of a body-centered cubic Bravais lattice is shown in the figure above. The conventional cell has volume a^3. What is the volume of the primitive unit cell?
- \frac{a^3}{8}
- \frac{a^3}{4}
- \frac{a^3}{2}
- a^3
- If the absolute temperature of a blackbody is increased by a factor of 3, the energy radiated per second per unit area does which of the following
- Decreases by a factor of 81.
- Decreases by a factor of 9.
- Increases by a factor of 9.
- Increases by a factor of 81.
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 24 November 2017
Problem set 96
Monday, 1 May 2017
Problem set 95
- Van der Waals equation for one mole is \left(p+\frac{a}{V^2}\right)(V-b)=RT. The equation for n moles would be:
- \left(p+\frac{an^2}{V^2}\right)(V-nb)=RT
- \left(p+\frac{a^2}{V^2}\right)(V-b)=nRT
- \left(p+\frac{an^2}{V^2}\right)(V-nb)=nRT
- \left(p+\frac{a}{n2V^2}\right)(nV-b)=nRT
- A Wheatstone's bridge is used to measure the pressure in the following vacuum gauge:
- McLeod gauge
- Pirani gauge
- Penning gauge
- Ionization gauge
- The continuous X-rays are produced when:
- Electrons of the target atoms jump from a higher to lower orbital
- Electrons from the valance electrons are de-excited to the hole in the inner orbitals
- Electrons are accelerated to fixed energy
- Incident electrons are deaccelerated near heavy nuclei of the target atoms
- For detecting photons which of the following detectors is used?
- Faraday collector
- Channeltron
- Photo-multiplier
- Micro-channel plate
- For obtaining a Laue pattern of a single crystal the sample is held stationary in a beam of :
- Monochromatic K_\alpha X-rays from Cu target
- Monochromatic K_\alpha X-rays from Mo target
- Monochromatic K_\beta X-rays from Cu target
- Continuous X-rays from any target
\left(p+\frac{an^2}{V^2}\right)(V-nb)=nRT
Hence, answer is (C)
Pirani gauge
Hence, answer is (B)
Incident electrons are deaccelerated near heavy nuclei of the target atoms
Hence, answer is (D)
Photo-multiplier
Hence, answer is (C)
Continuous X-rays from any target
Hence, answer is (D)
Friday, 28 April 2017
Problem set 94
- The energy density for photons in a cavity is proportional to
- T^3
- T
- T^4
- T^{4/3}
- Let \rho be the density matrix for a system. Then
- Tr(\rho)=0
- Tr(\rho) < 0
- 0\leq Tr(\rho) < 1
- Tr(\rho)=1
- \hat\rho^2=\hat\rho projector
- \hat\rho^\dagger=\hat\rho hermiticity
- T_r\hat\rho=1 normalization
- \hat\rho\geq 0 positivity
- A system has only two energy levels E_1 and E_2. In equilibrium at temperature T, the number of particles occupying level E_1 is double of those occupying level E_2. The value of E_2-E_1 must be (k is Boltzmann constant):
- kT\ln2
- kT\ln3
- 3kT
- 2kT
- The quantities (i) isothermal compressibility (ii) volume coefficient of expansion are :
- Extensive and intensive respectively
- Intensive and extensive respectively
- Both extensive
- Both intensive
- The chemical potential in classical limit is:
- Zero
- Negative
- Positive
- Complex quantity
According to Stefan Boltzmann law energy density is proportional to fourth power of temperature.
Hence, answer is (C)
The Density matrix for the pure state |\psi> is given by \rho=|\psi><\psi| This density matrix has the following properties:
Hence, answer is (D)
n_1\propto e^{-E_1/kT} n_2\propto e^{-E_2/kT} \frac{n_1}{n_2}=e{(E_2-E_1)/kT}=2 E_2-E_1=kT\ln2
Hence, answer is (A)
The properties that increase proportionally with the size of the system, such as n and V, called extensive properties, and those defined for each small region in the system, such as P and T, called intensive properties. Terms that are added together or are on opposite sides of an equal sign must contain the same number of extensive variables. The quotient of two extensive variables is an intensive variable.
Isothermal compressibility is given by K=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T and volume coefficient of expansion is given by \alpha=-\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_P.
Both of these are intensive properties.
Hence, answer is (D)
Negative
Hence, answer is (B)
Thursday, 27 April 2017
Problem set 93
- Uncertainty relation holds between :
- Time and space
- Life time and energy
- Position and energy
- Momentum and energy
- Addition of angular momentum j_1=1 and j_2=\frac{1}{2} will result in 6 states, of which the number of linearly independent states with magnetic number m=-\frac{1}{2} is :
- zero
- 6
- 3
- 2
- In a scattering event by a spherical symmetric potential, only P-wave scattering occurs. The angular distribution of differential cross-section is proportional to :
- constant
- \cos\theta
- \cos^2{\theta}
- a+\sin\theta
- If energy of a two-dimensional simple harmonic oscillator E=\frac{p_x^2}{2m}+\frac{p_y^2}{2m}+\frac{1}{2}m\omega^2(x^2+y^2) is fixed to be 3\hbar\omega, the entropy is given by (k_B is Boltzmann constant):
- k_B\ln3
- 2k_B\ln3
- k_B\ln2
- zero
- The equation of state for photon gas is:
- pV=\frac{5}{3}E
- pV=\frac{2}{3}E
- pV=\frac{1}{3}E
- pV=\hbar\omega for some fixed frequency \omega
Life time and energy
Hence, answer is (B)
For j_1=1 and j_2=\frac{1}{2}, resultant j=j_1+j_2 to |j_1-j_2|. Hence, j=\frac{3}{2},\frac{1}{2} j=\frac{3}{2}\Rightarrow m=\frac{3}{2},\frac{1}{2},-\frac{1}{2},-\frac{3}{2} j=\frac{1}{2}\Rightarrow m=\frac{1}{2},-\frac{1}{2} Hence, there are two linearly independent states
Hence, answer is (D)
\cos^2{\theta}
Hence, answer is (C)
The energy of a two dimensional oscillator is E=\left(n_x+n_y+1\right)\hbar\omega
The energy is fixed to be 3\hbar\omega. Clearly, following combinations of n_x, n_y will give energy 3\hbar\omega
n_x=2, n_y=0
n_x=1, n_y=1
n_x=0, n_y=2
Hence, number of miscrstates accessible is \Omega=3
S=k_B\ln\Omega=k_B\ln3
Hence, answer is (A)
pV=\frac{1}{3}E
Hence, answer is (C)
Tuesday, 25 April 2017
Problem set 92
- Given [x_i,P_j]=i\hbar\delta_{ij}, i,j=1,2,3. [x_1,P_2^2] is:
- 0
- i\hbar P_2
- 2x_1
- 2P_2
- Which of the following is an eigen state of square of linear momentum operator P_x^2?
- Ax^2
- A\left(\sin{kx}+\cos{kx}\right)
- Ae^{-\alpha x^2}
- A\sin^2{kx}
- The electron in a hydrogen atom is in a superposition state described by the wavefunction \psi(\vec r)=A\left[4\psi_{100}(\vec r)-2\psi_{211}(\vec r)+\sqrt{6}\psi_{210}(\vec r)-\sqrt{10}\psi_{21-1}(\vec r)\right], \psi_{nlm}(\vec r) normalized wave function. The value of normalization constant, A, is:
- \frac{1}{3}
- \frac{1}{6}
- 6
- 36
- Two coherent light sources of intensities I and 9I are used in an interference experiment. The resultant intensity at points where the waves from the two sources with phase difference \pi is :
- 16I
- 9I
- 4I
- zero
- Non-relativistic hydrogen atom spectrum is proportional to -1/n^2. The degeneracy of n^{th} level is:
- n
- 2n+1
- n^2
- 1/n^2
\begin{align*} [x_1,P_2^2]&=P_2[x_1,P_2]+[x_1,P_2]P_2\\ &=0 \end{align*}
Hence, answer is (A)
P_x=-i\hbar\frac{\partial}{\partial x}. Hnece, P_x^2=-\hbar^2\frac{\partial^2}{\partial x^2}.
Clearly,
\begin{align*}
{\scriptstyle P_x^2\left(A\left(\sin{kx}+\cos{kx}\right)\right)}&={\scriptstyle-\hbar^2\frac{\partial^2}{\partial x^2}\left(A\left(\sin{kx}+\cos{kx}\right)\right)}\\
&=k^2A\left(\sin{kx}+\cos{kx}\right)
\end{align*}
Hence, answer is (B)
Normalization condition is \int\psi^*(\vec r)\psi(\vec r)dr=1. As \psi_{nlm}(\vec r) are normalized wave functions, we have, \int\psi^*_{nlm}(\vec r)\psi_{n'l'm'}(\vec r)dr=\delta_{n'n}\delta_{l'l}\delta_{m'm} \int\psi^*(\vec r)\psi(\vec r)dr=|A|^2\left(16+4+6+10\right)=1 A=\frac{1}{6}
Hence, answer is (B)
Resultant intensity is given by I_R=I_1+I_2+2\sqrt{I_1I_2}\cos\delta I_R=I+9I+2\sqrt{9I}\cos\pi I_R=10I-6I=4I
Hence, answer is (C)
The energy levels in the hydrogen atom depend only on the principal quantum number n. For given values of n and l, the ( 2 l + 1 ), states with m_{l}=-l \rightarrow l are degenerate. The degree of degeneracy of the energy level E_n is therefore : \sum _{l=0}^{n-1}(2l+1)=n^{2}, which is doubled if the spin degeneracy is included.
Hence, answer is (C)
Sunday, 23 April 2017
Problem set 91
- Which of the following equations signifies the conservative nature of the electric field \vec E?
- \vec\nabla\cdot\vec E(\vec r)=\frac{\rho(\vec r)}{\epsilon_0}
- \vec\nabla\times\vec E(\vec r)=\vec 0
- \vec\nabla\times\vec E(\vec r,t)=\frac{-\partial\vec B(\vec r,t)}{\partial t}
- \epsilon_0\mu_0\frac{\partial\vec E(\vec r,t)}{\partial t}=\vec\nabla\times\vec B(\vec r,t)-\mu_0\vec J(\vec r,t)
- Plane electromagnetic wave is propagating through a perfect dielectric material of refractive index \frac{3}{2}. The phase difference between the fields \vec E and \vec B associated with the wave passing through the material is
- Zero
- \pi
- \frac{3}{2}\pi
- any non-zero value between -\pi and \pi
- An electromagnetic wave is propagating in a dielectric medium of permittivity \epsilon and permeability \mu having an electric field vector \vec E associated with the wave. The associated magnetic field \vec H is
- Parallel to \vec E with magnitude E\sqrt{\mu/\epsilon}
- Parallel to \vec E with magnitude E\sqrt{\epsilon/\mu}
- Perpendicular to \vec E with magnitude E\sqrt{\mu/\epsilon}
- Perpendicular to \vec E with magnitude E\sqrt{\epsilon/\mu}
- Power radiated by a point charge moving with constant acceleration of magnitude \alpha is proportional to
- \alpha
- \alpha^2
- \alpha^{-1}
- \alpha^{-2}
- The output of a laser has a bandwidth of 1.2\times10^{14} Hz. The coherence length l_c of the output radiation is
- 3.6 mm
- 50 \mum
- 2.5 \mum
- 1.5 cm
A field is said to be conservative if it can be expressed as a gradient of scalar potential V. The equation \vec\nabla\times\vec E(\vec r)=\vec 0 implies that \vec E(\vec r) can be expressed as \vec E(\vec r)=-\vec\nabla V.
Hence, answer is (B)
For a perfect dielectric the phase difference between \vec E and \vec B is zero.
Hence, answer is (A)
Perpendicular to \vec E with magnitude E\sqrt{\epsilon/\mu}
Hence, answer is (D)
The power radiated by a point charge is given by Larmor formula as P=\frac{\mu_0q^2\alpha^2}{6\pi c}
Hence, answer is (B)
Coherence length of laser is given by l_c=\frac{c}{\Delta\nu} l_c=\frac{3\times10^8}{1.2\times10^{14}}=2.5 \mu m
Hence, answer is (C)
Friday, 24 March 2017
Problem set 90
- A plane polarized EM wave of frequency \omega is incident at an angle \theta in a rectangular waveguide of resonant frequency \omega_{mn}. Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of :
- \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}
- c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}
- \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}}
- c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}
- The electric field of an electromagnetic wave propagating in the free space is given by : \vec E(r,t)=E_0\hat z\cos{\left[200\sqrt{3}\pi x-200\pi y-\omega t\right]}. Then the wave vector \vec k is given by
- 200\frac{\sqrt{3}}{2}\pi\hat x-200\pi\hat y
- 400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]
- 200\sqrt{3}\pi\hat x
- -200\pi\hat y
- The Ampere's law in the free space takes the form:
- \vec\nabla\times\vec B=\mu_0\vec J
- \vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- \vec\nabla\times\vec B=\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- \vec\nabla\times\vec B=\mu_0\vec J-\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- An electric charge +Q is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is :
- \frac{Q}{\epsilon_0}
- \frac{Q}{10\epsilon_0}
- \frac{Q}{6\epsilon_0}
- \frac{10Q}{\epsilon_0}
- A field at certain point in the space is expressed as the potential function V=3x^2z-xy^3+z. Then the potential V at point (2,-1,1) is :
- 15 V
- 13 V
- 0 V
- 8 V
v_g=c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}
Hence, answer is (D)
General format of electromagnetic wave equation is \vec E(r,t)=E_0\hat z\cos{(\vec k\cdot\vec r-\omega t)} \vec k\cdot\vec r= 200\sqrt{3}\pi x-200\pi y \Rightarrow \vec k=400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]
Hence, answer is (B)
\vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
Hence, answer is (B)
According to Gauss’ Theorem, the total electric flux through all the six faces of the cube is, \Phi = \frac{Q}{\epsilon_0} Each face of the cube comprises 1/6 of the total surface of the cube. Therefore, the flux passing through each face is, \Phi = \frac{Q}{6\epsilon_0}
Hence, answer is (C)
V=32^2\times1-2\times(-1)^3+1=15 V
Hence, answer is (A)
Wednesday, 22 March 2017
Problem set 89
- A particle is at rest in rotating frame of reference. The pseudoforce(s) acting on the particle is(are)
- None of these
- Only the Coriolis force
- only the centrifugal force
- both Coriolis force and centrifugal force
- A thin rigid rod of length l is moving inside a sphere of radius R(R>l) such that both of its ends are in contact with inner surface of the sphere. The degrees of freedom of the rod are:
- Four
- Three
- Two
- One
- For a system shown in figure given below, the Lagrangian function is given by : (V=0 at y=0)
- L=M\dot y^2+Mgy
- L=\frac{1}{2}M\dot y^2+Mgy
- L=\frac{1}{2}M\dot y^2-Mg(y-x)
- L=M\dot y^2+Mg(y-x)
- "Hamiltonian H is not equal to the total energy E (sum of kinetic and potential energies)", hold true for a system characterized with:
- conservative forces and time-independent constraints
- conservative forces and time-dependent constraints
- dissipative forces and time-independent constraints
- for every system irrespective of nature of forces and constraints
- A particle moves under the action of force \vec F=-\frac{1}{r^n}\hat r. The particle moves in a closed orbit if:
- n=-1 or n=2
- n=1 or n=-2
- n=-1 or n=-2
- n=1 or n=2
Coriolis force is given by F_{Co}=-2m(\vec\omega\times\vec v')
Centrifugal force is given by F_{c}=-2m\vec\omega\times(\vec\omega\times\vec r)
Hence, in rotating frame, if particle is at rest only centrifugal force act on the particle. If particle is not at rest both forces act on the particle.
Hence, answer is (C)
As both ends of the rigid rod are in contact with inner surface, the position of any one end can be determined with \theta and \phi coordinates with respect to coordinate system fixed at the center of the sphere. To determine position of other end we will require one more coordinate i.e. orientation of rod with respect to some fixed direction. Hence, degrees of freedom is three.
Hence, answer is (B)
L=T-V T=\frac{1}{2}M\dot x^2+\frac{1}{2}M\dot y^2 But \dot x=\dot y T=M\dot y^2 V=-Mgy L=M\dot y^2+Mgy
Hence, answer is (A)
dissipative forces and time-independent constraints
Hence, answer is (C)
According to Bertrand's theorem the central force of the form F=\frac{-k}{r^{3-\beta^2}} can produce stable, closed, non-circular orbits if it satisfies the condition \beta^2(\beta^2-4)(\beta^2-1)=0. Hence, this condition is satisfied for \beta=0,1,2 i.e. n=3-\beta^2=3,2,-1
Hence, answer is (A)
Monday, 20 March 2017
Problem set 88
- The moment of inertia of a thin disc of radius R about an axis passing through its center and perpendicular to the plane of disc is:
- MR^2
- \frac{2}{3}MR^2
- \frac{3}{2}MR^2
- \frac{1}{2}MR^2
- A coin is tossed four times what is the probability of getting two heads and two tails?
- \frac{3}{8}
- \frac{1}{2}
- \frac{5}{8}
- \frac{3}{4}
- Consider three vectors \vec a=\hat i+\hat j+\hat k, \vec b=\hat i-\hat j+\hat k and \vec c=\hat i-\hat j-\hat k. Which of the following statement is true?
- \vec a, \vec b, \vec c are linearly independent
- \vec a, \vec b are linearly independent
- \vec b and \vec c are right angle to each other
- \vec a and \vec c are parallel
- Which of the following defines a conservative force field?
- \vec\nabla\cdot\vec F=0
- \vec\nabla\times\vec F=0
- \oint\vec F\cdot\vec dr=0
- \frac{d\vec F}{dt}=0
- \nabla\left(\frac{1}{|\vec r|}\right) is given by
- \frac{1}{r}\hat r
- \frac{1}{r^3}(\hat i+\hat j+\hat k)
- -\frac{\vec r}{r^3}
- r(\hat i-\hat j-\hat k)
\frac{1}{2}MR^2
Hence, answer is (D)
When a coin is tossed once, there are two out comes possible. Hence, the coin is tossed four times, the total number of outcomes are 2^4=16. Out of which we will two heads exactly \frac{4!}{2!(4-2)!}=6 times. Hence, probability of getting two heads and two tails is \frac{6}{16}=\frac{3}{8}
Hence, answer is (A)
The vectors in a subset S = \{ \vec v_1 ,\vec v_2 ,\cdots,\vec v_n \} of a vector space V are said to be linearly dependent, if there exist a finite number of distinct vectors \vec {v}_{1},\vec {v}_{2},\dots ,\vec {v}_{k} in S and scalars a_{1},a_{2},\dots ,a_{k}, not all zero, such that a_{1}\vec {v}_{1}+a_{2}\vec {v}_{2}+\cdots +a_{k}\vec {v}_{k}=\vec {0} where zero denotes the zero vector. Let a_1\vec a+a_2\vec b+a_3\vec c=0 \begin{bmatrix}1&1&1\\1&-1&-1\\1&1&-1\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} If \vec a, \vec b and \vec c are linearly independent, then the only solution to this system of equations is the trivial solution, a_1=a_2=a_3=0. For homogeneous systems this happens precisely when the determinant is non-zero. If determinant is zero then vectors are linearly dependent. \begin{vmatrix}1&1&1\\1&-1&-1\\1&1&-1\end{vmatrix}=4 Hence, \vec a, \vec b and \vec c are linearly independent.
Hence, answer is (A)
A force field \vec F, is called a conservative force or conservative vector field if it satisfies following three equivalent conditions: \vec\nabla\times\vec F=0 \oint\vec F\cdot\vec dr=0 \vec F=-\vec\nabla\Phi where \Phi is scalar potential.
Hence, answer is (B and C)
\begin{align*} \nabla\left(\frac{1}{|\vec r|}\right)&={\scriptstyle \left(\hat i\frac{\partial}{\partial x}+\hat j\frac{\partial}{\partial y}+\hat k\frac{\partial}{\partial z}\right)\left(\frac{1}{\sqrt{x^2+y^2+z^2}}\right)}\\ &={\scriptstyle -\left(\frac{1}{\left(x^2+y^2+z^2\right)^{3/2}}\right)\left(x\hat i+y\hat j+z\hat k\right)}\\ &=-\frac{\vec r}{r^3}\\ \end{align*}
Hence, answer is (C)
Saturday, 18 March 2017
Problem set 87
- Eigenvalues of the matrix \begin{bmatrix}1&-1\\1&1\end{bmatrix}
- 1, -1
- -1, -i
- i, -i
- 1+i, 1-i
- Consider an n-MOSFET with the following parameters: current drive strength K= 60 \:\mu A/V^2, breakdown voltage BV_{DS}=10\: V, ratio of effective gate width to the channel length \frac{W}{L}=5 and threshold voltage V_{th}=0.5V. In the circuit given below, this n-MOSFET is operating in the
- ohmic region
- cut-off region
- saturation region
- breakdown region
- Particular integral of first order linear differential \frac{dy}{dx}=x+y is given by:
- y(x)=-x-1
- y(x)=x+1
- y(x)=x-1
- y(x)=-x+1
Linear differential equation is given by \frac{dy}{dx}+P(x)y=Q(x) Multiply both sides by the Integrating Factor e^{\int P(x)dx} {\scriptstyle \frac{dy}{dx}e^{\int P(x)dx}+P(x)ye^{\int P(x)dx}=Q(x)e^{\int P(x)dx}} \frac{d\left(ye^{\int P(x)dx}\right)}{dx}=Q(x)e^{\int P(x)dx} On integrating we get ye^{\int P(x)dx}=\int Q(x)e^{\int P(x)dx}dx+c \frac{dy}{dx}-y=x P(x)=-1, Q(x)=x ye^{-\int dx}=\int xe^{-\int dx}dx+c ye^{-x}=\int xe^{-x}dx+c Integrating by parts ye^{-x}=-xe^{-x}+\int e^{-x}dx+c ye^{-x}=-xe^{-x}-e^{-x}+c y=-x-1Hence, answer is (A)
- The Fourier transform of a Gaussian function is of the form:
- Exponential
- Lorentzian
- Gaussian
- Screened coulomb
- The real part of \log{(3+4i)} is :
- \log2
- \log3
- \log4
- \log5
Determinant of matrix is equal to product of eigenvalues. \begin{vmatrix}1&-1\\1&1\end{vmatrix}=2 Clearly (1+i)(1-i)=2
Hence, answer is (D)
The MOSFET is in
saturation when V_{GS} > V_{th} and V_{DS} > V_{GS} - V_{th}.
cut-off region when V_{GS} < V_{th}
linear when V_{GS} > V_{th} and V_{DS} < V_{GS} - V_{th}.
V_{GS}=1.2 V, V_{th}=0.5V, V_{DS}=10 V
Hence, answer is (C)
Hence, answer is (C)
Let z=x+iy, r=\sqrt{x^2+y^2}, \theta=\tan^{-1}{\frac{y}{x}} and z=re^{i\theta}
For z=3+4i, r=\sqrt{3^2+16^2}=5, \theta=\tan^{-1}{\frac{4}{3}}=0.92729 and z=5e^{i0.92729} \begin{align*} \log{(3+4i)}&=\log{5e^{i0.92729}}\\ &=\log5+i0.92729 \end{align*}
Hence, answer is (D)
Thursday, 16 March 2017
Problem set 86
- A function f(x) satisfies the differential equation \frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a), where \omega is positive. The Fourier transform \tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x) of f, and the solution of the equation are, respectively,
- \frac{e^{ika}}{k^2+\omega^2} and \frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)
- \frac{e^{ika}}{k^2+\omega^2} and \frac{1}{2\omega}e^{-\omega|x-a|}
- \frac{e^{ika}}{k^2-\omega^2} and \frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)
- \frac{e^{ika}}{k^2-\omega^2} and \frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)
- Let E_s denote the contribution of the surface energy per nucleon in the liquid drop model. The ratio E_s\left(^{27}_{13}Al\right):E_s\left(^{64}_{30}Al\right) is
- 2:3
- 4:3
- 5:3
- 3:2
- According to the shell model, the nuclear magnetic moment of the ^{27}_{13}Al nucleus is (Given that for a proton g_l=1, g_s=5.586, and for a neutron g_l=0, g_s=-3.826)
- -1.913\mu_N
- 14.414\mu_N
- 4.793\mu_N
- 0
- The ground state electronic configuration of ^{22}Ti is [Ar]3d^54s^2. Which state, in the standard spectroscopic notations, is not possible in this configuration?
- ^1F_{3}
- ^1S_{0}
- ^1D_{2}
- ^3P_{0}
- If all shells and subshells are full then the term symbol is ^1S_0.
- The spin multiplicity is maximized i.e., the electrons occupy degenerate orbitals so as to retain parallel spins as long as possible (Hund’s rule).
- The orbital angular momentum is also maximized i.e., the orbitals are filled with highest positive m_l values first.
- The overall S is calculated by multiplying \frac{1}{2} times the number of unpaired electrons. The overall L is calculated by adding the m_l values for each electron (so if there are two electrons in the same orbital, add twice that orbital's m_l).
- If the sub-shell is less than half-filled, J = L– S and if the sub-shell is more than half – filled, J = L +S.
- The band energy of an electron in a crystal for a particular k-direction has the form \epsilon(k)=A-B\cos{2ka}, where A and B are positive constants and 0 < ka <\pi. The electron has a hole-like behaviour over the following range of k:
- \frac{\pi}{4} < ka < \frac{3\pi}{4}
- \frac{\pi}{2} < ka < \pi
- 0 < ka < \frac{\pi}{4}
- \frac{\pi}{2} < ka < \frac{3\pi}{4}
Hence, answer is (B)
Surface energy E_s\propto A^{2/3} Surface energy per nucleon is E_s\propto \frac{A^{2/3}}{A}=\frac{1}{A^{1/3}} \frac{E_s\left(^{27}_{13}Al\right)}{E_s\left(^{64}_{30}Al\right)}=\frac{64^{1/3}}{27^{1/3}}=\frac{4}{3}
Hence, answer is (B)
In ^{27}_{13}Al there are odd numbers of protons (13) and even numbers of neutrons (14). The unpaired proton is responsible for magnetic moment. ^{27}_{13}Al has an odd proton in the j = 5/2 1d (l=2) state. Magnetic moment for single nucleon is given by \mu_j=\left(g_ll+\frac{1}{2}g_s\right)\mu_N \mu_j=\left(1\times2+\frac{1}{2}5.586\right)\mu_N \mu_j=4.793\mu_N
Hence, answer is (C)
The rules governing the term symbol for the ground state according to L-S coupling scheme are given below:
The electron configuration of Ti is 1s^22s^22p^63s^23p^63d^24s^2. For d^2 configuration we have
\uparrow | \uparrow | ||||
---|---|---|---|---|---|
m_l= | +2 | +1 | 0 | -1 | -2 |
Let us determine which states are possible
If we have
\uparrow\downarrow | |||||
---|---|---|---|---|---|
m_l= | +2 | +1 | 0 | -1 | -2 |
If we have
\uparrow\downarrow | |||||
---|---|---|---|---|---|
m_l= | +2 | +1 | 0 | -1 | -2 |
If we have
\uparrow | \uparrow | ||||
---|---|---|---|---|---|
m_l= | +2 | +1 | 0 | -1 | -2 |
For ^1F_3 state we must have S=0, L=3 and J=3. However, it is not possible to arrange electrons to get S=0, L=3 and J=3.
Hence, answer is (A)
The electron has a hole-like behaviour when it has negative effective mass. m*=\frac{\hbar^2}{\frac{\partial^2\epsilon}{\partial k^2}}=4a^2\cos{2ka} Clearly, m* will be negative in the range \frac{\pi}{4} < ka < \frac{3\pi}{4}
Hence, answer is (A)
Tuesday, 14 March 2017
Problem set 85
- In a normal Zeeman effect experiment using a magnetic field of strength 0.3 T, the splitting between the components of a 660 nm spectral line is
- 12 pm
- 10 pm
- 8 pm
- 6 pm
- What is the Fourier transform \int dxe^{ikx}f(x) of f(x)=\delta(x)+\sum\limits_{n=1}^\infty\frac{d^n}{dx^n}\delta(x), where \delta(x) is the Dirac delta-function?
- \frac{1}{1-ik}
- \frac{1}{1+ik}
- \frac{1}{k+i}
- \frac{1}{k-i}
- A canonical transformation (q,p)\rightarrow (Q,P) is made through the generating function F(q,P)=q^2P on the Hamiltonian H(q,p)=\frac{p^2}{2\alpha q^2}+\frac{\beta}{4}q^4 where \alpha and \beta are constants. The equations of motion for (Q,P) are
- \dot Q=P/\alpha and \dot P=-\beta Q
- \dot Q=4P/\alpha and \dot P=-\beta Q/2
- \dot Q=P/\alpha and \dot P=-\frac{2P^2}{Q}-\beta Q
- \dot Q=2P/\alpha and \dot P=-\beta Q
- The internal energy E(T) of a system at a fixed volume is found to depend on the temperature T as E(T)=aT^2+bT^4. Then the entropy S(T), as a function of temperature, is
- \frac{1}{2}aT^2+\frac{1}{4}bT^4
- 2aT^2+4bT^4
- 2aT+\frac{4}{3}bT^3
- 2aT+2bT^3
- Consider a gas of Cs atoms at a number density of 10^{12} atoms/cc. When the typical inter-particle distance is equal to the thermal de Broglie wavelength of the particles, the temperature of the gas is nearest to (Take the mass of a Cs atom to be 22.7\times10^{-26} kg.)
- 1\times10^{-9} K
- 7\times10^{-5} K
- 1\times10^{-3} K
- 2\times10^{-8} K
\Delta\lambda=\frac{\mu_BB\lambda^2}{hc} \Delta\lambda={\scriptstyle \frac{9.274\times10^{-24}\times0.3\times(660\times10^{-9})^2}{6.626\times10^{-34}\times3\times10^8}} \Delta\lambda=6 pm
Hence, answer is (D)
Using identity \int dx f(x)\delta^{(n)}(x-y)=(-1)^nf^{(n)}(y), where f^{(n)}(y) is n^{th} derivative of f. \begin{align*} &\int\!\! dxe^{ikx}\!f(x)\!=\!{\scriptstyle \int dxe^{ikx}\left(\delta(x)+\sum\limits_{n=1}^\infty\frac{d^n}{dx^n}\delta(x)\right)}\\ &={\scriptstyle \int dxe^{ikx}\delta(x)+\int dxe^{ikx}\sum\limits_{n=1}^\infty\frac{d^n}{dx^n}\delta(x)}\\ &={\scriptstyle 1+\int dxe^{ikx}\left(\delta^{(1)}(x)+\delta^{(2)}(x)+\delta^{(3)}(x)+\dots\right)}\\ &={\scriptstyle 1+(-1)^1ik+(-1)^2(ik)^2+(-1)^3(ik)^3+\cdots}\\ &={\scriptstyle 1-ik-k^2+ik^3+k^4-ik^5\cdots}\\ &={\scriptstyle \left(1-k^2+k^4-k^6+\cdots\right)-ik+ik^3-ik^5\cdots}\\ &={\scriptstyle \left(1-k^2+k^4-k^6+\cdots\right)-ik\left(1-k^2+k^4-k^6+\cdots\right)}\\ &={\scriptstyle \left(1-k^2+k^4-k^6+\cdots\right)(1-ik)}\\ &={\scriptstyle \left(1+(ik)^2+(ik)^4+(ik)^6+\cdots\right)(1-ik)}\\ &=\frac{1}{1-(ik)^2}(1-ik)\\ &=\frac{1}{1+ik} \end{align*}
Hence, answer is (B)
The generating function may be any of the following types: F_1(q,Q), F_2(q,P), F_3(p,Q), F_4(p,P). For these generating functions we have following relations between generating function and canonical variables
Generating function | Relations |
F_1(q,Q) | p_i=\frac{\partial F_1}{\partial q_i}, P_i=-\frac{\partial F_1}{\partial Q_i}, K=H+\frac{\partial F_1}{\partial t} |
F_2(q,P) | p_i=\frac{\partial F_2}{\partial q_i}, Q_i=\frac{\partial F_2}{\partial P_i}, K=H+\frac{\partial F_2}{\partial t} |
F_3(p,Q) | q_i=-\frac{\partial F_3}{\partial p_i}, P_i=-\frac{\partial F_3}{\partial Q_i}, K=H+\frac{\partial F_3}{\partial t} |
F_4(p,P) | q_i=-\frac{\partial F_4}{\partial p_i}, Q_i=\frac{\partial F_4}{\partial P_i}, K=H+\frac{\partial F_4}{\partial t} |
Hence, answer is (B)
dU=TdS-PdV At constant volume PdV=0 dU=TdS \begin{align*} S&=\int\frac{1}{T}dU\\ &=\int\frac{1}{T}dE\\ &=\int\frac{1}{T}\left(2aT\:dT+4bT^3dT\right)\\ &=\int\left(2a\:dT+4bT^2dT\right)\\ &=2aT+\frac{4}{3}bT^3 \end{align*}
Hence, answer is (C)
Density of particles n=\frac{N}{V}. Hence, inter-particle separation is given by d=\left(\frac{V}{N}\right)^{\frac{1}{3}}=\left(\frac{1}{n}\right)^{\frac{1}{3}} d=\left(\frac{1}{10^{12}}\right)^{\frac{1}{3}}=10^{-4}cm=10^{-6}m \lambda_{th}=10^{-6}m \lambda_{th}=\frac{h}{\sqrt{2\pi mk_BT}} \begin{align*} T&=\frac{h^2}{2\pi mk_B\lambda_{th}^2}\\ &={\scriptstyle \frac{(6.626\times10^{-34})^{2}}{2\times3.14\times22.7\times10^{-26}\times 1.381 \times 10^{-23}\times10^{-12}}}\\ &=2.23009664\times10^{-8} K \end{align*}
Hence, answer is (D)
Sunday, 12 March 2017
Problem set 84
- In the schematic figure given below, assume that the propagation delay of each logic gate is t_{gate}. The propagation delay of the circuit will be maximum when the logic inputs A and B make the transition
- (0,1)\rightarrow(1,1)
- (1,1)\rightarrow(0,1)
- (0,0)\rightarrow(1,1)
- (0,0)\rightarrow(0,1)
- Given the input voltage V_i, which of the following waveforms correctly represents the output voltage V_0 in the circuit shown below?
- In finding the roots of the polynomial f(x)=3x^3-4x-5 using the iterative Newton-Raphson method, the initial guess is taken to be x=2. In the next iteration its value is nearest to
- 1.671
- 1.656
- 1.559
- 1.551
- For a particle of energy E and P momentum (in a frame F), the rapidity y is defined as y=\frac{1}{2}\ln{\left(\frac{E+p_3c}{E-p_3c}\right)}. In a frame F' moving with velocity v=(0,0,\beta c) with respect to F, the rapidity y' will be
- y'=y+\frac{1}{2}\ln{\left(1-\beta^2\right)}
- y'=y-\frac{1}{2}\ln{\left(\frac{1+\beta}{1-\beta}\right)}
- y'=y+\ln{\left(\frac{1+\beta}{1-\beta}\right)}
- y'=y+2\ln{\left(\frac{1+\beta}{1-\beta}\right)}
- The partition function of a single gas molecule is Z_\alpha. The partition function of N such non-interacting gas molecules is given by
- \frac{(Z_\alpha)^N}{N!}
- (Z_\alpha)^N
- N(Z_\alpha)
- \frac{(Z_\alpha)^N}{N}
When input of gate changes its state, the output of gate does not change instantaneously. Instead, the out put changes after a small delay. The delay in the circuit due to all gates is called propagation delay. The states of each gate for different inputs are as shown below.
During transition (0,1)\rightarrow(1,1) from figures (b) and (c) we see that only first OR gate, AND gate, and second OR change their states. Hence, time delay is 3t_{gate}
During transition (1,1)\rightarrow(0,1) from figures (c) and (b) we see that only first OR gate, AND gate, and second OR change their states. Hence, time delay is 3t_{gate}
During transition (0,0)\rightarrow(1,1) from figures (a) and (c) we see that only NOT gate changes its state. Hence, time delay is t_{gate}
During transition (0,0)\rightarrow(0,1) from figures (a) and (b) we see that all gates change their states. Hence, time delay is 4t_{gate}
Hence, answer is (D)
Output voltage is given by V_0=A(V_2-V_1) where, V_1 and V_2 are voltages at inverting and non-inverting inputs and A is gain given by A=\frac{R_f}{R_i}=\frac{10}{5}=2 V_0=2(V_2-V_1) V_0=A(0.5-V_1) If V_1>V_2, V_0 will be negative, but no option have negative voltage.
Hence, V_1\leq V_2
Since, V_2=0.5\: V, maximum value of V_1=0.5, hence, minimum output voltage is V_{0_{min}}=0
Also, this is inverting amplifier.
Hence, answer is (B)
Newton-Raphson formula is \begin{align*} x_1&=x_0-\frac{f(x_0)}{f'(x_0)}\\ &=2-\frac{3\times2^3-4\times2-5}{9\times2^2-4}\\ &=1.65625 \end{align*}
Hence, answer is (B)
y=\frac{1}{2}\ln{\left(\frac{E+p_3c}{E-p_3c}\right)} y'=\frac{1}{2}\ln{\left(\frac{E'+p_3'c}{E'-p_3'c}\right)} According to Lorentz transformation (boost) p_3'=\gamma\left(p_3-\frac{vE}{c^2}\right) E'=\gamma\left(E-vp_3\right) Using v=\beta c p_3'=\gamma\left(p_3-\frac{\beta E}{c}\right) E'=\gamma\left(E-\beta cp_3\right) y'={\textstyle \frac{1}{2}\ln{\left(\frac{\gamma\left(E-\beta cp_3\right)+\gamma\left(p_3-\frac{\beta E}{c}\right)c}{\gamma\left(E-\beta cp_3\right)-\gamma\left(p_3-\frac{\beta E}{c}\right)c}\right)}} y'={\textstyle \frac{1}{2}\ln{\left(\frac{\left(E-\beta cp_3\right)+\left(cp_3-\beta E\right)}{\left(E-\beta cp_3\right)-\left(cp_3-\beta E\right)}\right)}} y'=\frac{1}{2}\ln{\left(\frac{\left(E+cp_3\right)-\beta\left(E+cp_3\right)}{\left(E- cp_3\right)+\beta\left(E- cp_3\right)}\right)} y'=\frac{1}{2}\ln{\left(\frac{\left(E+cp_3\right)}{\left(E- cp_3\right)}\frac{1-\beta}{1+\beta}\right)} y'={\textstyle \frac{1}{2}\ln{\left(\frac{\left(E+cp_3\right)}{\left(E- cp_3\right)}\right)} + \frac{1}{2}\ln{\left(\frac{1-\beta}{1+\beta}\right)}} y'=y - \frac{1}{2}\ln{\left(\frac{1+\beta}{1-\beta}\right)}
Hence, answer is (B)
Z_N=(Z_\alpha)^N
Hence, answer is (B)
Friday, 10 March 2017
Problem set 83
- Suppose that the Coulomb potential of the hydrogen atom is changed by adding an inverse-square term such that the total potential is V(\vec r)=-\frac{Ze^2}{r}+\frac{g}{r^2}, where g is a constant. The energy eigenvalues E_{nlm} in the modified potential
- depend on n and l, but not on m
- depend on n but not on l and m
- depend on n and m, but not on l
- depend explicitly on all three quantum numbers n, l and m
- When an ideal monatomic gas is expanded adiabatically from an initial volume V_0 to 3V_0, its temperature changes from T_0 to T. Then the ratio T/T_0is
- \frac{1}{3}
- \left(\frac{1}{3}\right)^{2/3}
- \left(\frac{1}{3}\right)^{1/3}
- 3
- A box of volume V containing N molecules of an ideal gas, is divided by a wall with a hole into two compartments. If the volume of the smaller compartment is V/3, the variance of the number of particles in it, is
- N/3
- 2N/9
- \sqrt{N}
- \sqrt{N}/3
- A gas of non-relativistic classical particles in one dimension is subjected to a potential V(x)=\alpha|x| (where \alpha is a constant). The partition function is (\beta=\frac{1}{k_BT})
- \sqrt{\frac{4m\pi}{\beta^3\alpha^2h^2}}
- \sqrt{\frac{2m\pi}{\beta^3\alpha^2h^2}}
- \sqrt{\frac{8m\pi}{\beta^3\alpha^2h^2}}
- \sqrt{\frac{3m\pi}{\beta^3\alpha^2h^2}}
- The dependence of current I on the voltage V of a certain device is given by I=I_0\left(1-\frac{V}{V_0}\right)^2 where I_0 and V_0 are constants. In an experiment the current I is measured as the voltage V applied across the device is increased. The parameters V_0 and \sqrt{I_0} can be graphically determined as
- the slope and the y-intercept of the I-V^2 graph
- the negative of the ratio of the y-intercept and the slope, and the y-intercept of the I-V^2 graph
- the slope and the y-intercept of the \sqrt{I}-V graph
- the negative of the ratio of the y-intercept and the slope, and the y-intercept of the \sqrt{I}-V graph
Radial equation for hydrogen atom is {\scriptstyle -\frac{\hbar^2}{2\mu}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)+\frac{\hbar^2l(l+1)}{2\mu r^2}R+V(r)R=ER} For V(\vec r)=-\frac{Ze^2}{r}+\frac{g}{r^2} equation becomes {\scriptstyle -\frac{\hbar^2}{2\mu}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)+\frac{\hbar^2l(l+1)}{2\mu r^2}R+V(r)R+\frac{g}{r^2}R=ER} {\scriptstyle -\frac{\hbar^2}{2\mu}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)+\left[\frac{\hbar^2\left(l(l+1)+\frac{2\mu}{\hbar^2}g\right)}{2\mu r^2}\right]R+V(r)R=ER} Let l_{eff}(l_{eff}+1)=l(l+1)+\frac{2\mu}{\hbar^2}g {\scriptstyle -\frac{\hbar^2}{2\mu}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right)+\left[\frac{\hbar^2l_{eff}(l_{eff}+1)}{2\mu r^2}\right]R+V(r)R=ER} E\propto\frac{1}{(N+l_{eff}+1)^2}
Hence, answer is (A)
For adiabatic expansion of ideal gas we have PV^{\gamma}=const TV^{\gamma-1}=const P^{1-\gamma}T^{\gamma}=const T_1V_1^{\gamma-1}=T_2V_2^{\gamma-1} \frac{T_2}{T_1}=\left(\frac{V_1}{V_2}\right)^{\gamma-1} For monoatomic ideal gas \gamma=\frac{5}{3} \frac{T_2}{T_1}=\left(\frac{1}{3}\right)^{\frac{5}{3}-1} \frac{T_2}{T_1}=\left(\frac{1}{3}\right)^{\frac{2}{3}}
Hence, answer is (B)
When a box of V, containing N molecules, is divided into two compartments of volume pV and qV such that pV+qV=V (or p+q=1) then variance in number of particles is given by \sigma=Npq In our case compartments have volume \frac{1}{3}V and \frac{2}{3}V. Hence, p=\frac{1}{3} and q=\frac{2}{3} \sigma=N\frac{1}{3}\frac{2}{3}=\frac{2N}{9}
Hence, answer is (B)
Classical partition function for single particle is Z_1=\frac{1}{h^3}\int d^3p\:d^3q\:e^{-\beta H(q,p)} For one dimension Z_1=\frac{1}{h}\int dp_x\:dx\:e^{-\beta H(q,p)} H=\frac{p_x^2}{2m}+\alpha|x| \begin{align*} Z_1&=\frac{1}{h}\int dp_x\:dx\:e^{-\beta \left(\frac{p_x^2}{2m}+\alpha|x|\right)}\\ &=\frac{1}{h}\left\{\int dp_x\:e^{-\frac{\beta}{2m} p_x^2}\!\!\int dx\:e^{-\beta \alpha|x|}\!\right\}\\ \end{align*} Using \int dx\:e^{-a x^2}=\sqrt{\frac{\pi}{a}} \begin{align*} I_1&=\int dp_x\:e^{-\frac{\beta}{2m} p_x^2}\\ &=\sqrt{\frac{2m\pi}{\beta}} \end{align*} \begin{align*} I_2&=\int dx\:e^{-\beta \alpha|x|}\\ &=2\int_0^\infty dx\:e^{-\beta \alpha x}\\ &=2\frac{1}{\beta\alpha} \end{align*} Z_1=\frac{1}{h}\sqrt{\frac{2m\pi}{\beta}}\frac{2}{\beta\alpha} Z_1=\sqrt{\frac{8m\pi}{\beta^3\alpha^2h^2}}
Hence, answer is (C)
The equation I=I_0\left(1-\frac{V}{V_0}\right)^2 can be written as \sqrt{I}=-\frac{\sqrt{I_0}}{V_0}V+\sqrt{I_0} Hence, \sqrt{I}-V graph is a straight line with slope -\frac{\sqrt{I_0}}{V_0} and y-intercept \sqrt{I_0}
Hence, answer is (D)
Wednesday, 8 March 2017
Problem set 82
- Two parallel plate capacitors, separated by distances x and 1.1x respectively, have a dielectric material of dielectric constant 3.0 inserted between the plates, and are connected to a battery of voltage V. The difference in charge on the second capacitor compared to the first is
- +66%
- +20%
- -3.3%
- -10%
- The state of a particle of mass m in a one-dimensional rigid box in the interval 0 to L is given by the normalised wavefunction \psi(x)\!=\!\!\sqrt{\frac{2}{L}}\!\!\left(\frac{3}{5}\sin{\left(\frac{2\pi x}{L}\right)}+\frac{4}{5}\sin{\left(\frac{4\pi x}{L}\right)}\!\right). If its energy is measured, the possible outcomes and the average value of energy are, respectively
- \frac{h^2}{2mL^2}, \frac{2h^2}{mL^2} and \frac{73}{50}\frac{h^2}{mL^2}
- \frac{h^2}{8mL^2}, \frac{h^2}{2mL^2} and \frac{19}{40}\frac{h^2}{mL^2}
- \frac{h^2}{2mL^2}, \frac{2h^2}{mL^2} and \frac{19}{10}\frac{h^2}{mL^2}
- \frac{h^2}{8mL^2}, \frac{2h^2}{mL^2} and \frac{73}{200}\frac{h^2}{mL^2}
- If \hat L_x, \hat L_y and \hat L_z are the components of the angular momentum operator in three dimensions, the commutator \left[\hat L_x, \hat L_x\hat L_y\hat L_z\right] may be simplified to
- i\hbar\hat L_x\left(\hat L_z^2-\hat L_y^2\right)
- i\hbar\hat L_z\hat L_y\hat L_x
- i\hbar\hat L_x\left(2\hat L_z^2-\hat L_y^2\right)
- 0
- The eigenstates corresponding to eigen-values E_1 and E_2 of a time-independent Hamiltonian are |1 > and |2 > respectively. If at t=0, the system is in a state |\psi(t=0) > =\sin\theta |1 > +\cos\theta |2 > the value of < \psi(t)|\psi(t) > at time t will be
- 1
- (E_1\!\sin^2\theta\!+\!E_2\!\cos^2\theta)/\!\sqrt{E_1^2\!+\!E_2^2}
- e^{iE_1t/\hbar}\sin\theta+e^{iE_2t/\hbar}\cos\theta
- e^{-iE_1t/\hbar}\sin^2\theta+e^{-iE_2t/\hbar}\cos^2\theta
- The specific heat per molecule of a gas of diatomic molecules at high temperatures is
- 8k_B
- 3.5k_B
- 4.5k_B
- 3k_B
Capacitance of a parallel plate capacitor is inversely proportional to the separation between the plates i.e. C\propto\frac{1}{d} C_1\propto\frac{1}{x} C_2\propto\frac{1}{1.1x} Let us take area of plates such that C_1=\frac{1}{x} C_2=\frac{1}{1.1x} C_2-C_1=\frac{1}{1.1x}-\frac{1}{x}=-\frac{0.1}{1.1x} \% difference=\frac{100\times\left(-\frac{0.1}{1.1x}\right)}{\frac{1}{1.1x}} \% difference=-10\%
Hence, answer is (D)
Eigen function and energy of a particle in a 1D box are given by \psi_n(x)=\sqrt{\frac{2}{L}}\sin{\left(\frac{n\pi x}{L}\right)} E_n=\frac{n^2h^2}{8mL^2} Hence, \psi(x)=c_2\psi_2(x)+c_4\psi_4(x) where, c_2=\frac{3}{5} and c_4=\frac{4}{5} are the expansion coefficients.
Particle may be in its one of the eigenstate, hence possible values of energies are E_2=\frac{2^2h^2}{8mL^2}=\frac{h^2}{2mL^2} E_4=\frac{4^2h^2}{8mL^2}=\frac{2h^2}{mL^2} Average value of energy is \begin{align*} < E > &= < \psi |H|\psi > \\ &=|c_2|^2E_2+|c_4|^2E_4\\ &=\frac{9}{25}\frac{h^2}{2mL^2}+\frac{16}{25}\frac{2h^2}{mL^2}\\ &=\frac{73}{50}\frac{h^2}{mL^2} \end{align*}
Hence, answer is (A)
\begin{align*} \left[\hat L_x, \hat L_x\hat L_y\hat L_z\right]&= {\scriptstyle \hat L_x \left[\hat L_x, \hat L_y\hat L_z\right]+\left[\hat L_x, \hat L_x\right]\hat L_y\hat L_z}\\ &=\hat L_x \left[\hat L_x, \hat L_y\hat L_z\right]\\ &={\scriptstyle \hat L_x \left\{\hat L_y\left[\hat L_x, \hat L_z\right]+\left[\hat L_x, \hat L_y\right]\hat L_z\right\}}\\ &={\scriptstyle \hat L_x \left\{\hat L_y\left(-i\hbar \hat L_y\right)+\left(i\hbar\hat L_z\right)\hat L_z\right\}}\\ &=i\hbar\hat L_x\left(\hat L_z^2-\hat L_y^2\right) \end{align*}
Hence, answer is (A)
Time evolution of quantum systems is given by Unitary Transformations, \begin{align*} \left|\psi(t)\right > &=\hat U\left|\psi(t=0)\right > \\ &=e^{-iHt/\hbar}\left\{\sin\theta \left|1\right > +\cos\theta \left|2\right > \right\}\\ &=\sin\theta e^{-\frac{iHt}{\hbar}}\left|1\right > +\cos\theta e^{-\frac{iHt}{\hbar}}\left|2\right > \end{align*} Using property f(\hat A)\psi_n=f(a_n)\psi_n we get \begin{align*} \left|\psi(t)\right > &=\sin\theta e^{-\frac{iE_1t}{\hbar}}\left|1\right > +\cos\theta e^{-\frac{iE_2t}{\hbar}}\left|2\right > \\ \end{align*} Hence, \left < \psi(t)\right|\left.\psi(t)\right > =\sin^2\theta+\cos^2\theta=1
Hence, answer is (A)
At high temperatures, the specific heat at constant volume C_v has three degrees of freedom from rotation, two from translation, and two from vibration. Hence, f=7. E=\frac{7}{2}RT C_v=\frac{dE}{dT}=\frac{7}{2}R
Hence, answer is (B)
Monday, 6 March 2017
Problem set 81
- The Gauss hypergeometric function F(a,b,c;z), defined by the Taylor series expansion around z=0 as {\scriptstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n} satisfies the recursion relation
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a-1,b-1,c-1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a+1,b+1,c+1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a-1,b-1,c-1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a+1,b+1,c+1;z)}
- Let (x,y) and (x',y') be the coordinate systems used by the observers O and O', respectively. Observer moves with a velocity v= \beta c along their common positive x-axis. If x_+=x+ct and x_-=x-ct are the linear combinations of the coordinates, the Lorentz transformation relating O and O' takes the form
- x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}} and x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}
- x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+ and x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-
- x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}} and x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}
- x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+ and x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-
- A particle of mass m is constrained to move in a vertical plane along a trajectory given by x=A\cos\theta, y=A\sin\theta, where A is constant.
- The Lagrangian of the particle is
- \frac{1}{2}mA^2\dot\theta^2-mgA\cos\theta
- \frac{1}{2}mA^2\dot\theta^2-mgA\sin\theta
- \frac{1}{2}mA^2\dot\theta^2
- \frac{1}{2}mA^2\dot\theta^2+mgA\cos\theta
- The equation of motion of particle is
- \ddot\theta-\frac{g}{A}\cos\theta=0
- \ddot\theta+\frac{g}{A}\sin\theta=0
- \ddot\theta=0
- \ddot\theta-\frac{g}{A}\sin\theta=0
- L=\frac{1}{2}mA^2\dot\theta^2-mgA\cos\theta
Hence, answer is (A)
- \frac{d}{dt}\left(\frac{\partial L}{\partial \dot\theta}\right)-\frac{\partial L}{\partial\theta}=0 gives \ddot\theta-\frac{g}{A}\sin\theta=0
Hence, answer is (D)
- The x- and z-components of a static magnetic field in a region are B_x=B_0(x^2-y^2) and B_z=0, respectively. Which of the following solutions for its y-component is consistent with the Maxwell equations?
- B_y=B_0xy
- B_y=-2B_0xy
- B_y=B_0(x^2-y^2)
- B_y=B_0(\frac{1}{3}x^3-xy^2)
- A magnetic field \vec B is B\hat z in the region x > 0 and zero elsewhere. A rectangular loop, in the xy-plane, of sides l (along the x-direction) and h (along the y-direction) is inserted into the x > 0 region from the x < 0 region at a constant velocity \vec v =v \hat x. Which of the following values of l and h will generate the largest EMF?
- l=8, h=3
- l=4, h=6
- l=6, h=4
- l=12, h=2
{\scriptstyle \frac{d}{dz}F(a,b,c;z)=\sum\limits_{n=1}^\infty n\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^{n-1}} {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\sum\limits_{n=1}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)(n-1)!}z^{n-1}} {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n)b(b+1)\cdots(b+n)}{c(c+1)\cdots(c+n)(n)!}z^{n}} {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}\sum\limits_{n=0}^\infty\frac{(a+1)\cdots(a+n)(b+1)\cdots(b+n)}{(c+1)\cdots(c+n)(n)!}z^{n}} {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}\frac{d}{dz}F(a+1,b+1,c+1;z)}
Hence, answer is (D)
According to Lorentz transformation x'=\gamma(x-vt) y'=y z'=z t'=\gamma(t-xv/c^2) where, \gamma=\frac{1}{\sqrt{1-v^2/c^2}}. Hence, for v= \beta c, \gamma=\frac{1}{\sqrt{1-\beta^2}} \begin{align*} x_+'&=x'+ct'\\ &=\gamma(x-\beta ct)+c\gamma(t-x\beta/c)\\ &=\gamma\left\{x-\beta ct+ct-x\beta\right\}\\ &=\gamma\left\{x_+-\beta (x+ct)\right\}\\ &=\gamma\left\{1-\beta \right\}x_+\\ &=\sqrt{\frac{1-\beta}{1+\beta}}x_+ \end{align*} \begin{align*} x_-'&=x'-ct'\\ &=\gamma(x-\beta ct)-c\gamma(t-x\beta/c)\\ &=\gamma\left\{x-\beta ct-ct+x\beta\right\}\\ &=\gamma\left\{x_-+\beta (x-ct)\right\}\\ &=\gamma\left\{1+\beta \right\}x_-\\ &=\sqrt{\frac{1+\beta}{1-\beta}}x_- \end{align*}
Hence, answer is (D)
\vec\nabla\cdot\vec B=0 gives 2B_0x+\frac{\partial B_y}{\partial y}=0 \frac{\partial B_y}{\partial y}=-2B_0x B_y=-2B_0xy
Hence, answer is (B)
Let us consider an area element \vec A=hx\hat z passing through magnetic field \vec B=B\hat z. Magnetic flux passing through area element is \Phi=\vec B\cdot\vec A=Bhx Rate of change of magnetic flux \frac{d\Phi}{dt}=Bh\frac{dx}{dt}=Bhv \epsilon=-\frac{d\Phi}{dt}=-Bhv Hence, EMF \epsilon will be largest for largest value of h
Hence, answer is (B)
Saturday, 4 March 2017
Problem set 80
- A dielectric sphere of radius R carries polarization \vec P = kr^2\hat r, where r is the distance from the centre and k is a constant. In the spherical polar coordinate system, \hat r, \hat \theta and \hat \phi are the unit vectors.
- The bound volume charge density inside the sphere at a distance r from the centre is
- -4kR
- -4kr
- -4kr^2
- -4kr^3
- The electric field inside the sphere at a distanced d from the centre is
- \frac{-kd^2}{\epsilon_0}\hat r
- \frac{-kR^2}{\epsilon_0}\hat r
- \frac{-kd^2}{\epsilon_0}\hat\theta
- \frac{-kR^2}{\epsilon_0}\hat\theta
-
The unit vector \hat n on the surface of the sphere is equal to the radial unit vector. The bound
surface charge is equal to \sigma_b=\vec P\cdot\hat n|_{r=R}
The bound volume charge is equal to \begin{align*} \rho_b&=-\vec\nabla\cdot\vec P\\ &=-\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\:kr^2\right)\\ &=-4kr \end{align*}
Hence, answer is (B)
-
The electric field inside the sphere at a distanced d from the centre is
\begin{align*}
\vec E_{volume}&=\frac{1}{4\pi\epsilon_0}\frac{\frac{4}{3}\pi d^3\rho_b}{d^2}\hat r\\
&=\frac{1}{4\pi\epsilon_0}\frac{\frac{4}{3}\pi d^3(-4kd)}{d^2}\hat r\\
&=-\frac{4kd^2}{3\epsilon_0}\hat r
\end{align*}
Hence, answer is ()
- Let X and Y be two independent random variables, each of which follow a normal distribution with the same standard deviation \sigma, but with means +\mu and -\mu, respectively. Then the sum follows a
- distribution with two peaks at \pm\mu and mean 0 and standard deviation \sigma\sqrt{2}
- normal distribution with mean 0 and standard deviation 2\sigma
- distribution with two peaks at \pm\mu and mean 0 and standard deviation 2\sigma
- normal distribution with mean 0 and standard deviation \sigma\sqrt{2}
- Using dimensional analysis, Planck defined a characteristic temperature T_p from powers of the gravitational constant G, Planck’s constant h, Boltzmann constant k_B and the speed of light c in vacuum. The expression for T_p is proportional to
- \sqrt{\frac{hc^5}{k_B^2G}}
- \sqrt{\frac{hc^3}{k_B^2G}}
- \sqrt{\frac{G}{hc^4k_B^2}}
- \sqrt{\frac{hk_B^2}{Gc^3}}
- A ball of mass m, initially at rest, is dropped from a height of 5 meters. If the coefficient of restitution is 0.9, the speed of the ball just before it hits the floor the second time is approximately (take g = 9.8\: m/s^2)
- 9.80 m/s
- 9.10 m/s
- 8.91 m/s
- 7.02 m/s
The convolution of two normal densities with means \mu_1 and \mu_2 and variances \sigma_1 and \sigma_2 is again a normal density, with mean \mu_1+\mu_2 and variance \sigma_1^2+\sigma_2^2. \mu_t=-\mu+\mu=0 \sigma^2_t=\sigma^2+\sigma^2=2\sigma^2 \sigma_t=\sqrt{2}\sigma
Hence, answer is (D)
The Planck temperature is defined as: T_p=\frac{m_pc^2}{k_B} where, m_p is Plank mass.
Now, let m_p=c^{n_1}G^{n_2}\hbar^{n_3} Using dimensional analysis we have {\scriptstyle M^1L^0T^0=\left[M^0L^{n_1}T^{-n_1}\right]\left[M^{-n_2}L^{3n_2}T^{-2n_2}\right]\left[M^{n_3}L^{2n_3}T^{-n_3}\right]} n_{3}-n_{2}=1 n_{1}+3n_{2}+2n_{3}=0 -n_{1}-2n_{2}-n_{3}=0 \Rightarrow n_{1}=1/2,n_{2}=-1/2,n_{3}=1/2 m_p=\sqrt{\frac{c\hbar}{G}} T_p=\sqrt{\frac{\hbar c^5}{k_B^2G}}
Hence, answer is (A)
For an object bouncing off a stationary object, such as a floor, coefficient of restitution, e=\sqrt{\frac{h'}{h}} h'=e^2h=4.05\:m v=\sqrt{2gh} v=\sqrt{2\times 9.8\times4.05}=8.91\:m/s
Hence, answer is (C)