- A plane polarized EM wave of frequency \omega is incident at an angle \theta in a rectangular waveguide of resonant frequency \omega_{mn}. Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of :
- \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}
- c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}
- \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}}
- c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}
- The electric field of an electromagnetic wave propagating in the free space is given by : \vec E(r,t)=E_0\hat z\cos{\left[200\sqrt{3}\pi x-200\pi y-\omega t\right]}. Then the wave vector \vec k is given by
- 200\frac{\sqrt{3}}{2}\pi\hat x-200\pi\hat y
- 400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]
- 200\sqrt{3}\pi\hat x
- -200\pi\hat y
- The Ampere's law in the free space takes the form:
- \vec\nabla\times\vec B=\mu_0\vec J
- \vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- \vec\nabla\times\vec B=\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- \vec\nabla\times\vec B=\mu_0\vec J-\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
- An electric charge +Q is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is :
- \frac{Q}{\epsilon_0}
- \frac{Q}{10\epsilon_0}
- \frac{Q}{6\epsilon_0}
- \frac{10Q}{\epsilon_0}
- A field at certain point in the space is expressed as the potential function V=3x^2z-xy^3+z. Then the potential V at point (2,-1,1) is :
- 15 V
- 13 V
- 0 V
- 8 V
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 24 March 2017
Problem set 90
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment