Processing math: 100%
Physics Resonance: Problem set 90 -->

Notice

Friday, 24 March 2017

Problem set 90

  1. A plane polarized EM wave of frequency \omega is incident at an angle \theta in a rectangular waveguide of resonant frequency \omega_{mn}. Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of :
    1. \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}
    2. c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}
    3. \frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}}
    4. c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}
  2. The electric field of an electromagnetic wave propagating in the free space is given by : \vec E(r,t)=E_0\hat z\cos{\left[200\sqrt{3}\pi x-200\pi y-\omega t\right]}. Then the wave vector \vec k is given by
    1. 200\frac{\sqrt{3}}{2}\pi\hat x-200\pi\hat y
    2. 400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]
    3. 200\sqrt{3}\pi\hat x
    4. -200\pi\hat y
  3. The Ampere's law in the free space takes the form:
    1. \vec\nabla\times\vec B=\mu_0\vec J
    2. \vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
    3. \vec\nabla\times\vec B=\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
    4. \vec\nabla\times\vec B=\mu_0\vec J-\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}
  4. An electric charge +Q is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is :
    1. \frac{Q}{\epsilon_0}
    2. \frac{Q}{10\epsilon_0}
    3. \frac{Q}{6\epsilon_0}
    4. \frac{10Q}{\epsilon_0}
  5. A field at certain point in the space is expressed as the potential function V=3x^2z-xy^3+z. Then the potential V at point (2,-1,1) is :
    1. 15 V
    2. 13 V
    3. 0 V
    4. 8 V

No comments :

Post a Comment