- A plane polarized EM wave of frequency $\omega$ is incident at an angle $\theta$ in a rectangular waveguide of resonant frequency $\omega_{mn}$. Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of :
- $\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}$
- $c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}$
- $\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}}$
- $c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}$
- The electric field of an electromagnetic wave propagating in the free space is given by : $\vec E(r,t)=E_0\hat z\cos{\left[200\sqrt{3}\pi x-200\pi y-\omega t\right]}$. Then the wave vector $\vec k$ is given by
- $200\frac{\sqrt{3}}{2}\pi\hat x-200\pi\hat y$
- $400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]$
- $200\sqrt{3}\pi\hat x$
- $-200\pi\hat y$
- The Ampere's law in the free space takes the form:
- $\vec\nabla\times\vec B=\mu_0\vec J$
- $\vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
- $\vec\nabla\times\vec B=\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
- $\vec\nabla\times\vec B=\mu_0\vec J-\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
- An electric charge $+Q$ is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is :
- $\frac{Q}{\epsilon_0}$
- $\frac{Q}{10\epsilon_0}$
- $\frac{Q}{6\epsilon_0}$
- $\frac{10Q}{\epsilon_0}$
- A field at certain point in the space is expressed as the potential function $V=3x^2z-xy^3+z$. Then the potential $V$ at point $(2,-1,1)$ is :
- 15 V
- 13 V
- 0 V
- 8 V
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 24 March 2017
Problem set 90
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment