Physics Resonance: Problem set 85 -->

Notice

Tuesday, 14 March 2017

Problem set 85

  1. In a normal Zeeman effect experiment using a magnetic field of strength 0.3 T, the splitting between the components of a 660 nm spectral line is
    1. 12 pm
    2. 10 pm
    3. 8 pm
    4. 6 pm
  2. What is the Fourier transform $\int dxe^{ikx}f(x)$ of $f(x)=\delta(x)+\sum\limits_{n=1}^\infty\frac{d^n}{dx^n}\delta(x)$, where $\delta(x)$ is the Dirac delta-function?
    1. $\frac{1}{1-ik}$
    2. $\frac{1}{1+ik}$
    3. $\frac{1}{k+i}$
    4. $\frac{1}{k-i}$
  3. A canonical transformation $(q,p)\rightarrow (Q,P)$ is made through the generating function $F(q,P)=q^2P$ on the Hamiltonian $H(q,p)=\frac{p^2}{2\alpha q^2}+\frac{\beta}{4}q^4$ where $\alpha$ and $\beta$ are constants. The equations of motion for $(Q,P)$ are
    1. $\dot Q=P/\alpha$ and $\dot P=-\beta Q$
    2. $\dot Q=4P/\alpha$ and $\dot P=-\beta Q/2$
    3. $\dot Q=P/\alpha$ and $\dot P=-\frac{2P^2}{Q}-\beta Q$
    4. $\dot Q=2P/\alpha$ and $\dot P=-\beta Q$
  4. The internal energy $E(T)$ of a system at a fixed volume is found to depend on the temperature $T$ as $E(T)=aT^2+bT^4$. Then the entropy $S(T)$, as a function of temperature, is
    1. $\frac{1}{2}aT^2+\frac{1}{4}bT^4$
    2. $2aT^2+4bT^4$
    3. $2aT+\frac{4}{3}bT^3$
    4. $2aT+2bT^3$
  5. Consider a gas of Cs atoms at a number density of $10^{12}$ atoms/cc. When the typical inter-particle distance is equal to the thermal de Broglie wavelength of the particles, the temperature of the gas is nearest to (Take the mass of a Cs atom to be $22.7\times10^{-26}$ kg.)
    1. $1\times10^{-9}$ K
    2. $7\times10^{-5}$ K
    3. $1\times10^{-3}$ K
    4. $2\times10^{-8}$ K

No comments :

Post a Comment