- A function $f(x)$ satisfies the differential equation $\frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a)$, where $\omega$ is positive. The Fourier transform $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$ of $f$, and the solution of the equation are, respectively,
- $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)$
- $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}e^{-\omega|x-a|}$
- $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)$
- $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)$
- Let $E_s$ denote the contribution of the surface energy per nucleon in the liquid drop model. The ratio $E_s\left(^{27}_{13}Al\right):E_s\left(^{64}_{30}Al\right)$ is
- 2:3
- 4:3
- 5:3
- 3:2
- According to the shell model, the nuclear magnetic moment of the $^{27}_{13}Al$ nucleus is (Given that for a proton $g_l=1$, $g_s=5.586$, and for a neutron $g_l=0$, $g_s=-3.826$)
- $-1.913\mu_N$
- $14.414\mu_N$
- $4.793\mu_N$
- 0
- The ground state electronic configuration of $^{22}Ti$ is $[Ar]3d^54s^2$. Which state, in the standard spectroscopic notations, is not possible in this configuration?
- $^1F_{3}$
- $^1S_{0}$
- $^1D_{2}$
- $^3P_{0}$
- The band energy of an electron in a crystal for a particular $k$-direction has the form $\epsilon(k)=A-B\cos{2ka}$, where $A$ and $B$ are positive constants and $0 < ka <\pi$. The electron has a hole-like behaviour over the following range of $k$:
- $\frac{\pi}{4} < ka < \frac{3\pi}{4}$
- $\frac{\pi}{2} < ka < \pi$
- $0 < ka < \frac{\pi}{4}$
- $\frac{\pi}{2} < ka < \frac{3\pi}{4}$
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 16 March 2017
Problem set 86
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment