Physics Resonance: Problem set 86 -->

Notice

Thursday, 16 March 2017

Problem set 86

  1. A function $f(x)$ satisfies the differential equation $\frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a)$, where $\omega$ is positive. The Fourier transform $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$ of $f$, and the solution of the equation are, respectively,
    1. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)$
    2. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}e^{-\omega|x-a|}$
    3. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)$
    4. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)$
  2. Let $E_s$ denote the contribution of the surface energy per nucleon in the liquid drop model. The ratio $E_s\left(^{27}_{13}Al\right):E_s\left(^{64}_{30}Al\right)$ is
    1. 2:3
    2. 4:3
    3. 5:3
    4. 3:2
  3. According to the shell model, the nuclear magnetic moment of the $^{27}_{13}Al$ nucleus is (Given that for a proton $g_l=1$, $g_s=5.586$, and for a neutron $g_l=0$, $g_s=-3.826$)
    1. $-1.913\mu_N$
    2. $14.414\mu_N$
    3. $4.793\mu_N$
    4. 0
  4. The ground state electronic configuration of $^{22}Ti$ is $[Ar]3d^54s^2$. Which state, in the standard spectroscopic notations, is not possible in this configuration?
    1. $^1F_{3}$
    2. $^1S_{0}$
    3. $^1D_{2}$
    4. $^3P_{0}$
  5. The band energy of an electron in a crystal for a particular $k$-direction has the form $\epsilon(k)=A-B\cos{2ka}$, where $A$ and $B$ are positive constants and $0 < ka <\pi$. The electron has a hole-like behaviour over the following range of $k$:
    1. $\frac{\pi}{4} < ka < \frac{3\pi}{4}$
    2. $\frac{\pi}{2} < ka < \pi$
    3. $0 < ka < \frac{\pi}{4}$
    4. $\frac{\pi}{2} < ka < \frac{3\pi}{4}$

No comments :

Post a Comment