Processing math: 100%
Physics Resonance: Problem set 86 -->

Notice

Thursday, 16 March 2017

Problem set 86

  1. A function f(x) satisfies the differential equation \frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a), where \omega is positive. The Fourier transform \tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x) of f, and the solution of the equation are, respectively,
    1. \frac{e^{ika}}{k^2+\omega^2} and \frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)
    2. \frac{e^{ika}}{k^2+\omega^2} and \frac{1}{2\omega}e^{-\omega|x-a|}
    3. \frac{e^{ika}}{k^2-\omega^2} and \frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)
    4. \frac{e^{ika}}{k^2-\omega^2} and \frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)
  2. Let E_s denote the contribution of the surface energy per nucleon in the liquid drop model. The ratio E_s\left(^{27}_{13}Al\right):E_s\left(^{64}_{30}Al\right) is
    1. 2:3
    2. 4:3
    3. 5:3
    4. 3:2
  3. According to the shell model, the nuclear magnetic moment of the ^{27}_{13}Al nucleus is (Given that for a proton g_l=1, g_s=5.586, and for a neutron g_l=0, g_s=-3.826)
    1. -1.913\mu_N
    2. 14.414\mu_N
    3. 4.793\mu_N
    4. 0
  4. The ground state electronic configuration of ^{22}Ti is [Ar]3d^54s^2. Which state, in the standard spectroscopic notations, is not possible in this configuration?
    1. ^1F_{3}
    2. ^1S_{0}
    3. ^1D_{2}
    4. ^3P_{0}
  5. The band energy of an electron in a crystal for a particular k-direction has the form \epsilon(k)=A-B\cos{2ka}, where A and B are positive constants and 0 < ka <\pi. The electron has a hole-like behaviour over the following range of k:
    1. \frac{\pi}{4} < ka < \frac{3\pi}{4}
    2. \frac{\pi}{2} < ka < \pi
    3. 0 < ka < \frac{\pi}{4}
    4. \frac{\pi}{2} < ka < \frac{3\pi}{4}

No comments :

Post a Comment