- The Gauss hypergeometric function F(a,b,c;z), defined by the Taylor series expansion around z=0 as {\scriptstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n} satisfies the recursion relation
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a-1,b-1,c-1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a+1,b+1,c+1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a-1,b-1,c-1;z)}
- {\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a+1,b+1,c+1;z)}
- Let (x,y) and (x',y') be the coordinate systems used by the observers O and O', respectively. Observer moves with a velocity v= \beta c along their common positive x-axis. If x_+=x+ct and x_-=x-ct are the linear combinations of the coordinates, the Lorentz transformation relating O and O' takes the form
- x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}} and x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}
- x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+ and x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-
- x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}} and x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}
- x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+ and x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-
- A particle of mass m is constrained to move in a vertical plane along a trajectory given by x=A\cos\theta, y=A\sin\theta, where A is constant.
- The Lagrangian of the particle is
- \frac{1}{2}mA^2\dot\theta^2-mgA\cos\theta
- \frac{1}{2}mA^2\dot\theta^2-mgA\sin\theta
- \frac{1}{2}mA^2\dot\theta^2
- \frac{1}{2}mA^2\dot\theta^2+mgA\cos\theta
- The equation of motion of particle is
- \ddot\theta-\frac{g}{A}\cos\theta=0
- \ddot\theta+\frac{g}{A}\sin\theta=0
- \ddot\theta=0
- \ddot\theta-\frac{g}{A}\sin\theta=0
- The x- and z-components of a static magnetic field in a region are B_x=B_0(x^2-y^2) and B_z=0, respectively. Which of the following solutions for its y-component is consistent with the Maxwell equations?
- B_y=B_0xy
- B_y=-2B_0xy
- B_y=B_0(x^2-y^2)
- B_y=B_0(\frac{1}{3}x^3-xy^2)
- A magnetic field \vec B is B\hat z in the region x > 0 and zero elsewhere. A rectangular loop, in the xy-plane, of sides l (along the x-direction) and h (along the y-direction) is inserted into the x > 0 region from the x < 0 region at a constant velocity \vec v =v \hat x. Which of the following values of l and h will generate the largest EMF?
- l=8, h=3
- l=4, h=6
- l=6, h=4
- l=12, h=2
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Monday, 6 March 2017
Problem set 81
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment