Physics Resonance: Problem set 81 -->

Notice

Monday, 6 March 2017

Problem set 81

  1. The Gauss hypergeometric function $F(a,b,c;z)$, defined by the Taylor series expansion around $z=0$ as $${\scriptstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n}$$ satisfies the recursion relation
    1. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a-1,b-1,c-1;z)}$
    2. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a+1,b+1,c+1;z)}$
    3. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a-1,b-1,c-1;z)}$
    4. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a+1,b+1,c+1;z)}$
  2. Let $(x,y)$ and $(x',y')$ be the coordinate systems used by the observers $O$ and $O'$, respectively. Observer moves with a velocity $v= \beta c$ along their common positive $x$-axis. If $x_+=x+ct$ and $x_-=x-ct$ are the linear combinations of the coordinates, the Lorentz transformation relating $O$ and $O'$ takes the form
    1. $x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$
    2. $x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+$ and $x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-$
    3. $x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$
    4. $x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+$ and $x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-$
  3. A particle of mass $m$ is constrained to move in a vertical plane along a trajectory given by $x=A\cos\theta$, $y=A\sin\theta$, where $A$ is constant.
    1. The Lagrangian of the particle is
      1. $\frac{1}{2}mA^2\dot\theta^2-mgA\cos\theta$
      2. $\frac{1}{2}mA^2\dot\theta^2-mgA\sin\theta$
      3. $\frac{1}{2}mA^2\dot\theta^2$
      4. $\frac{1}{2}mA^2\dot\theta^2+mgA\cos\theta$
    2. The equation of motion of particle is
      1. $\ddot\theta-\frac{g}{A}\cos\theta=0$
      2. $\ddot\theta+\frac{g}{A}\sin\theta=0$
      3. $\ddot\theta=0$
      4. $\ddot\theta-\frac{g}{A}\sin\theta=0$
  4. The $x$- and $z$-components of a static magnetic field in a region are $B_x=B_0(x^2-y^2)$ and $B_z=0$, respectively. Which of the following solutions for its $y$-component is consistent with the Maxwell equations?
    1. $B_y=B_0xy$
    2. $B_y=-2B_0xy$
    3. $B_y=B_0(x^2-y^2)$
    4. $B_y=B_0(\frac{1}{3}x^3-xy^2)$
  5. A magnetic field $\vec B$ is $B\hat z$ in the region $x > 0$ and zero elsewhere. A rectangular loop, in the $xy$-plane, of sides $l$ (along the $x$-direction) and $h$ (along the $y$-direction) is inserted into the $x > 0$ region from the $x < 0$ region at a constant velocity $\vec v =v \hat x$. Which of the following values of $l$ and $h$ will generate the largest EMF?
    1. $l=8$, $h=3$
    2. $l=4$, $h=6$
    3. $l=6$, $h=4$
    4. $l=12$, $h=2$

No comments :

Post a Comment