Physics Resonance: Problem set 82 -->

Notice

Wednesday, 8 March 2017

Problem set 82

  1. Two parallel plate capacitors, separated by distances $x$ and $1.1x$ respectively, have a dielectric material of dielectric constant 3.0 inserted between the plates, and are connected to a battery of voltage $V$. The difference in charge on the second capacitor compared to the first is
    1. +66%
    2. +20%
    3. -3.3%
    4. -10%
  2. The state of a particle of mass $m$ in a one-dimensional rigid box in the interval 0 to $L$ is given by the normalised wavefunction $\psi(x)\!=\!\!\sqrt{\frac{2}{L}}\!\!\left(\frac{3}{5}\sin{\left(\frac{2\pi x}{L}\right)}+\frac{4}{5}\sin{\left(\frac{4\pi x}{L}\right)}\!\right)$. If its energy is measured, the possible outcomes and the average value of energy are, respectively
    1. $\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{50}\frac{h^2}{mL^2}$
    2. $\frac{h^2}{8mL^2}$, $\frac{h^2}{2mL^2}$ and $\frac{19}{40}\frac{h^2}{mL^2}$
    3. $\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{19}{10}\frac{h^2}{mL^2}$
    4. $\frac{h^2}{8mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{200}\frac{h^2}{mL^2}$
  3. If $\hat L_x$, $\hat L_y$ and $\hat L_z$ are the components of the angular momentum operator in three dimensions, the commutator $\left[\hat L_x, \hat L_x\hat L_y\hat L_z\right]$ may be simplified to
    1. $i\hbar\hat L_x\left(\hat L_z^2-\hat L_y^2\right)$
    2. $i\hbar\hat L_z\hat L_y\hat L_x$
    3. $i\hbar\hat L_x\left(2\hat L_z^2-\hat L_y^2\right)$
    4. 0
  4. The eigenstates corresponding to eigen-values $E_1$ and $E_2$ of a time-independent Hamiltonian are $|1 > $ and $|2 > $ respectively. If at $t=0$, the system is in a state $ |\psi(t=0) > =\sin\theta |1 > +\cos\theta |2 > $ the value of $< \psi(t)|\psi(t) > $ at time $t$ will be
    1. 1
    2. $(E_1\!\sin^2\theta\!+\!E_2\!\cos^2\theta)/\!\sqrt{E_1^2\!+\!E_2^2}$
    3. $e^{iE_1t/\hbar}\sin\theta+e^{iE_2t/\hbar}\cos\theta$
    4. $e^{-iE_1t/\hbar}\sin^2\theta+e^{-iE_2t/\hbar}\cos^2\theta$
  5. The specific heat per molecule of a gas of diatomic molecules at high temperatures is
    1. $8k_B$
    2. $3.5k_B$
    3. $4.5k_B$
    4. $3k_B$

No comments :

Post a Comment