Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Wednesday, 8 March 2017
Problem set 82
Two parallel plate capacitors, separated by distances $x$ and $1.1x$ respectively, have a dielectric material of dielectric constant 3.0 inserted between the plates, and are connected to a battery of voltage $V$. The difference in charge on the second capacitor compared to the first is
+66%
+20%
-3.3%
-10%
Capacitance of a parallel plate capacitor is inversely proportional to the separation between the plates i.e. $C\propto\frac{1}{d}$
$$C_1\propto\frac{1}{x}$$
$$C_2\propto\frac{1}{1.1x}$$
Let us take area of plates such that
$$C_1=\frac{1}{x}$$
$$C_2=\frac{1}{1.1x}$$
$$C_2-C_1=\frac{1}{1.1x}-\frac{1}{x}=-\frac{0.1}{1.1x}$$
$$\% difference=\frac{100\times\left(-\frac{0.1}{1.1x}\right)}{\frac{1}{1.1x}}$$
$$\% difference=-10\%$$
Hence, answer is (D)
The state of a particle of mass $m$ in a one-dimensional rigid box in the interval 0 to $L$ is given by the normalised wavefunction $\psi(x)\!=\!\!\sqrt{\frac{2}{L}}\!\!\left(\frac{3}{5}\sin{\left(\frac{2\pi x}{L}\right)}+\frac{4}{5}\sin{\left(\frac{4\pi x}{L}\right)}\!\right)$. If its energy is measured, the possible outcomes and the average value of energy are, respectively
$\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{50}\frac{h^2}{mL^2}$
$\frac{h^2}{8mL^2}$, $\frac{h^2}{2mL^2}$ and $\frac{19}{40}\frac{h^2}{mL^2}$
$\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{19}{10}\frac{h^2}{mL^2}$
$\frac{h^2}{8mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{200}\frac{h^2}{mL^2}$
Eigen function and energy of a particle in a 1D box are given by
$$\psi_n(x)=\sqrt{\frac{2}{L}}\sin{\left(\frac{n\pi x}{L}\right)}$$
$$E_n=\frac{n^2h^2}{8mL^2}$$
Hence,
$$\psi(x)=c_2\psi_2(x)+c_4\psi_4(x)$$
where, $c_2=\frac{3}{5}$ and $c_4=\frac{4}{5}$ are the expansion coefficients.
Particle may be in its one of the eigenstate, hence possible values of energies are
$$E_2=\frac{2^2h^2}{8mL^2}=\frac{h^2}{2mL^2}$$
$$E_4=\frac{4^2h^2}{8mL^2}=\frac{2h^2}{mL^2}$$
Average value of energy is
\begin{align*}
< E > &= < \psi |H|\psi > \\
&=|c_2|^2E_2+|c_4|^2E_4\\
&=\frac{9}{25}\frac{h^2}{2mL^2}+\frac{16}{25}\frac{2h^2}{mL^2}\\
&=\frac{73}{50}\frac{h^2}{mL^2}
\end{align*}
Hence, answer is (A)
If $\hat L_x$, $\hat L_y$ and $\hat L_z$ are the components of the angular momentum operator in three dimensions, the commutator $\left[\hat L_x, \hat L_x\hat L_y\hat L_z\right]$ may be simplified to
The eigenstates corresponding to eigen-values $E_1$ and $E_2$ of a time-independent Hamiltonian are $|1 > $ and $|2 > $ respectively. If at $t=0$, the system is in a state $ |\psi(t=0) > =\sin\theta |1 > +\cos\theta |2 > $ the value of $< \psi(t)|\psi(t) > $ at time $t$ will be
Time evolution of quantum systems is given by Unitary Transformations,
\begin{align*}
\left|\psi(t)\right > &=\hat U\left|\psi(t=0)\right > \\
&=e^{-iHt/\hbar}\left\{\sin\theta \left|1\right > +\cos\theta \left|2\right > \right\}\\
&=\sin\theta e^{-\frac{iHt}{\hbar}}\left|1\right > +\cos\theta e^{-\frac{iHt}{\hbar}}\left|2\right >
\end{align*}
Using property $f(\hat A)\psi_n=f(a_n)\psi_n$ we get
\begin{align*}
\left|\psi(t)\right > &=\sin\theta e^{-\frac{iE_1t}{\hbar}}\left|1\right > +\cos\theta e^{-\frac{iE_2t}{\hbar}}\left|2\right > \\
\end{align*}
Hence,
$$\left < \psi(t)\right|\left.\psi(t)\right > =\sin^2\theta+\cos^2\theta=1$$
Hence, answer is (A)
The specific heat per molecule of a gas of diatomic molecules at high temperatures is
$8k_B$
$3.5k_B$
$4.5k_B$
$3k_B$
At high temperatures, the specific heat at constant volume $C_v$ has three degrees of freedom from rotation, two from translation, and two from vibration. Hence, $f=7$.
$$E=\frac{7}{2}RT$$
$$C_v=\frac{dE}{dT}=\frac{7}{2}R$$
No comments :
Post a Comment