Processing math: 100%
Physics Resonance: Problem set 47 -->

Notice

Tuesday, 27 December 2016

Problem set 47

  1. The Lagrangian of a particle moving in a plane is given in Cartesian coordinates as L=\dot x\dot y-x^2-y^2 In polar coordinates the expression for the canonical momentum (conjugate to the radial coordinate ) is
    1. \dot r\sin\theta+r\dot\theta\cos\theta
    2. \dot r\cos\theta+r\dot\theta\sin\theta
    3. 2\dot r\cos{2\theta}-r\dot\theta\sin{2\theta}
    4. \dot r\sin{2\theta}+r\dot\theta\cos{2\theta}
  2. The Hermite polynomial H_n(x) satisfies the differential equation \frac{d^2H_n}{dx^2}-2x\frac{dH_n}{dx}+2nH_n(x)=0 . The corresponding generating function G(x,t)=\sum\limits_{n=0}^{\infty}\frac{1}{n!}H_n(x)t^n satisfies the
    1. \frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2t\frac{\partial G}{\partial t}=0
    2. \frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}-2t^2\frac{\partial G}{\partial t}=0
    3. \frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial G}{\partial t}=0
    4. \frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial^2 G}{\partial x\partial t}=0
  3. A sinusoidal signal of peak to peak amplitude 1V and unknown time period is input to the following circuit for 5 seconds duration. If the counter measures a value (3E8)H in hexadecimal then the time period of the input signal is
    1. 2.5 ms
    2. 4 ms
    3. 10 ms
    4. 5 ms
  4. For a dynamical system governed by the equation \frac{dx}{dt}=2\sqrt{1-x^2}, with |x|\leq1,
    1. x=-1 and x=1 are both unstable fixed points
    2. x=-1 and x=1 are both stable fixed points
    3. x=-1 is an unstable fixed point and x=1 is a stable fixed point
    4. x=-1 is a stable fixed point and x=1 is an unstable fixed point
  5. The value of the integral \int_0^8\frac{1}{x^2+5}dx, evaluated using Simpson’s \frac{1}{3} rule with h=2, is
    1. 0.565
    2. 0.620
    3. 0.698
    4. 0.736

No comments :

Post a Comment