Physics Resonance: Problem set 47 -->

Notice

Tuesday, 27 December 2016

Problem set 47

  1. The Lagrangian of a particle moving in a plane is given in Cartesian coordinates as $$L=\dot x\dot y-x^2-y^2$$ In polar coordinates the expression for the canonical momentum (conjugate to the radial coordinate ) is
    1. $\dot r\sin\theta+r\dot\theta\cos\theta$
    2. $\dot r\cos\theta+r\dot\theta\sin\theta$
    3. $2\dot r\cos{2\theta}-r\dot\theta\sin{2\theta}$
    4. $\dot r\sin{2\theta}+r\dot\theta\cos{2\theta}$
  2. The Hermite polynomial $H_n(x)$ satisfies the differential equation $$\frac{d^2H_n}{dx^2}-2x\frac{dH_n}{dx}+2nH_n(x)=0$$ . The corresponding generating function $G(x,t)=\sum\limits_{n=0}^{\infty}\frac{1}{n!}H_n(x)t^n$ satisfies the
    1. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2t\frac{\partial G}{\partial t}=0$
    2. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}-2t^2\frac{\partial G}{\partial t}=0$
    3. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial G}{\partial t}=0$
    4. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial^2 G}{\partial x\partial t}=0$
  3. A sinusoidal signal of peak to peak amplitude 1V and unknown time period is input to the following circuit for 5 seconds duration. If the counter measures a value (3E8)H in hexadecimal then the time period of the input signal is
    1. 2.5 ms
    2. 4 ms
    3. 10 ms
    4. 5 ms
  4. For a dynamical system governed by the equation $\frac{dx}{dt}=2\sqrt{1-x^2}$, with $|x|\leq1$,
    1. $x=-1$ and $x=1$ are both unstable fixed points
    2. $x=-1$ and $x=1$ are both stable fixed points
    3. $x=-1$ is an unstable fixed point and $x=1$ is a stable fixed point
    4. $x=-1$ is a stable fixed point and $x=1$ is an unstable fixed point
  5. The value of the integral $\int_0^8\frac{1}{x^2+5}dx$, evaluated using Simpson’s $\frac{1}{3}$ rule with $h=2$, is
    1. 0.565
    2. 0.620
    3. 0.698
    4. 0.736

No comments :

Post a Comment