Physics Resonance: Problem set 45 -->

Notice

Sunday, 25 December 2016

Problem set 45

  1. A plane electromagnetic wave is traveling along the positive z-direction. The maximum electric field along the x-direction is 10 V/m. The approximate maximum values of the power per unit area and the magnetic induction $B$, respectively, are
    1. $3.3\times 10^{-7} watts/m^2$ and 10 tesla
    2. $3.3\times 10^{-7} watts/m^2$ and $3.3\times 10^{-8} $ tesla
    3. $0.265 watts/m^2$ and $10$ tesla
    4. $0.265 watts/m^2$ and $3.3\times 10^{-8} $ tesla
  2. A particle moves in one dimension in the potential $V=\frac{1}{2}k(t)x^2$, where $k(t)$ is a time dependent parameter. Then $\frac{d}{dt}\left < V\right >$, the rate of change of the expectation value $\left < V\right >$ of the potential energy, is
    1. $\frac{1}{2}\frac{dk}{dt}\left < x^2\right > +\frac{k}{2m}\left < xp+px\right >$
    2. $\frac{1}{2}\frac{dk}{dt}\left < x^2\right > +\frac{1}{2m}\left < p^2\right >$
    3. $\frac{k}{2m}\left < xp+px\right >$
    4. $\frac{1}{2}\frac{dk}{dt}\left < x^2\right >$
  3. Consider three inertial frames of reference A, B and C. The frame B moves with a velocity $c/2$ with respect to $A$, and $C$ moves with velocity $c/10$ with respect to B in the same direction. The velocity of C as measured in A is
    1. $\frac{3c}{7}$
    2. $\frac{4c}{7}$
    3. $\frac{c}{7}$
    4. $\frac{\sqrt{3}c}{7}$
  4. Suppose the yz-plane forms a chargeless boundary between two media of permittivities $\epsilon_{left}$ and $\epsilon_{right}$ where $\epsilon_{left}:\epsilon_{right}=1:2$. If the uniform electric field on the left is $\vec E_{left}=c\left(\hat i+\hat j+\hat k\right)$ (where $c$ is constant), then the electric field on the right $\vec E_{right}$ is
    1. $c\left(2\hat i+\hat j+\hat k\right)$
    2. $c\left(\hat i+2\hat j+2\hat k\right)$
    3. $c\left(\frac{1}{2}\hat i+\hat j+\hat k\right)$
    4. $c\left(\hat i+\frac{1}{2}\hat j+\frac{1}{2}\hat k\right)$
  5. Which of the following transformations $\left(V,\vec A\right)\rightarrow \left(V',\vec A'\right)$ of electrostatic potential $V$ and the vector potential $\vec A$ is a gauge transformation?
    1. $\left(V'=V+ax,\vec A'=\vec A+at\hat k\right)$
    2. $\left(V'=V+ax,\vec A'=\vec A-at\hat k\right)$
    3. $\left(V'=V+ax,\vec A'=\vec A+at\hat i\right)$
    4. $\left(V'=V+ax,\vec A'=\vec A-at\hat i\right)$

No comments :

Post a Comment