Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Sunday, 25 December 2016
Problem set 45
A plane electromagnetic wave is traveling along the positive z-direction. The maximum electric field along the x-direction is 10 V/m. The approximate maximum values of the power per unit area and the magnetic induction $B$, respectively, are
$3.3\times 10^{-7} watts/m^2$ and 10 tesla
$3.3\times 10^{-7} watts/m^2$ and $3.3\times 10^{-8} $ tesla
$0.265 watts/m^2$ and $10$ tesla
$0.265 watts/m^2$ and $3.3\times 10^{-8} $ tesla
The power per unit area transported by the electromagnetic waves is given
\begin{align*}
I&=c\epsilon_0E_0^2\\
&=3\times 10^8\times8.854\times10^{-12}\times10^2\\
&=0.265 watts/m^2
\end{align*}
Magnetic induction
\begin{align*}
B&=\frac{1}{c}E_0\\
&=\frac{1}{3\times10^{-8}}\times10\\
&=3.3\times 10^{-8} \: tesla
\end{align*}
Hence, answer is (D)
A particle moves in one dimension in the potential $V=\frac{1}{2}k(t)x^2$, where $k(t)$ is a time dependent parameter. Then $\frac{d}{dt}\left < V\right >$, the rate of change of the expectation value $\left < V\right >$ of the potential energy, is
Consider three inertial frames of reference A, B and C. The frame B moves with a velocity $c/2$ with respect to $A$, and $C$ moves with velocity $c/10$ with respect to B in the same direction. The velocity of C as measured in A is
$\frac{3c}{7}$
$\frac{4c}{7}$
$\frac{c}{7}$
$\frac{\sqrt{3}c}{7}$
Let $V$ be the velocity of frame $B$ with respect to frame A, $u_x$ be the velocity of frame C with respect to frame A, and $u_x'$ be the velocity of frame C with respect to frame B, then we have
$$u_x'=\frac{u_x-V}{1-u_xV/c^2}$$and $$u_x=\frac{u_x'+V}{1+u_x'V/c^2}$$
\begin{align*}
u_x&=\frac{u_x'+V}{1+u_x'V/c^2}\\
&=\frac{\frac{c}{10}+\frac{c}{2}}{1+\frac{c}{10}\frac{c}{2}\frac{1}{c^2}}=\frac{4}{7}c
\end{align*}
Hence, answer is (B)
Suppose the yz-plane forms a chargeless boundary between two media of permittivities $\epsilon_{left}$ and $\epsilon_{right}$ where $\epsilon_{left}:\epsilon_{right}=1:2$. If the uniform electric field on the left is $\vec E_{left}=c\left(\hat i+\hat j+\hat k\right)$ (where $c$ is constant), then the electric field on the right $\vec E_{right}$ is
Using relation
$$E_{left}\epsilon_{left}\cos{\theta_1}=E_{right}\epsilon_{right}\cos{\theta_2}$$
where, $\theta_1$ is the angle between $\vec E_{left}$ and the vector normal to the yz-plane and $\theta_2$ is the angle between $\vec E_{right}$ and the vector normal to the yz-plane. The vector normal to yz-plane is $\hat i$
Using $\epsilon_{left}:\epsilon_{right}=1:2$ in above equation
$$E_{left}\cos{\theta_1}=2E_{right}\cos{\theta_2}\quad--(1)$$
Magnitude of $\vec E_{left}$ is given by
$$E_{left}=\sqrt{c^2+c^2+c^2}=\sqrt{3}c$$
Let us find angle $\cos{\theta_1}$
\begin{align*}
\cos{\theta}&={\textstyle\frac{a_1b_1+a_2b_2+a_3b_3}{\sqrt{a_1^2+a_2^2+a_3^2}\sqrt{b_1^2+b_2^2+b_3^2}}}\\
&=\frac{c}{\sqrt{3c^2}\sqrt{1}}=\frac{1}{\sqrt{3}}
\end{align*}
Hence, equation (1) becomes
$$\sqrt{3}c\times\frac{1}{\sqrt{3}}=2E_{right}\cos{\theta_2}$$
$$E_{right}\cos{\theta_2}=\frac{c}{2}$$
One cane verify that $E_{right}=c\left(\hat i+2\hat j+2\hat k\right)$ satisfies the above condition. For this vector find $E_{right}$ and $\cos\theta_2$.
Hence, answer is (B)
Which of the following transformations $\left(V,\vec A\right)\rightarrow \left(V',\vec A'\right)$ of electrostatic potential $V$ and the vector potential $\vec A$ is a gauge transformation?
$\left(V'=V+ax,\vec A'=\vec A+at\hat k\right)$
$\left(V'=V+ax,\vec A'=\vec A-at\hat k\right)$
$\left(V'=V+ax,\vec A'=\vec A+at\hat i\right)$
$\left(V'=V+ax,\vec A'=\vec A-at\hat i\right)$
The general gauge transformation of electrostatic potential $V$ and the vector potential $\vec A$ is given by the equations
$$ V'=V-\frac{\partial f}{\partial t}$$
$$\vec A'=\vec A+\nabla f$$
In all options, we have, $V'=V+ax$. This implies
$$-\frac{\partial f}{\partial t}=ax$$
Hence, $f=-atx$
Hence, $\nabla f=-at\hat i$
Hence, we have, $\left(V'=V+ax,\vec A'=\vec A-at\hat i\right)$
No comments :
Post a Comment