Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Tuesday, 6 December 2016
Problem set 36
For a finite square well potential in one dimension:
It is possible that no bound state exits
There is always at least one bound state
Bound states have degeneracy = 2
Energy levels of bound states are equally spaced
(B) There is always at least one bound state
A particle with spin $\frac{1}{2}$ is in state with eigenstate of $S_z$. Then the expectation values of $S_x$, $S_x^2$ in this state are given by:
$-\frac{\hbar}{2}$, $\frac{1}{4}\hbar$
$0$, $\frac{3}{4}\hbar^2$
$\frac{\hbar}{2}$, $\frac{3}{4}\hbar^2$
$0$, $\frac{1}{4}\hbar^2$
For spin $\frac{1}{2}$ particle the eigenstates are given by $\chi_1=\begin{bmatrix}1\\0\end{bmatrix}$ and
$\chi_2=\begin{bmatrix}0\\1\end{bmatrix}$. The spin components $\hat S_x$, $\hat S_y$ and $\hat S_z$ are given by
$$\hat S_x=\frac{\hbar}{2}\sigma_x=\frac{\hbar}{2}\begin{bmatrix}0&1\\1&0\end{bmatrix}$$
$$\hat S_y=\frac{\hbar}{2}\sigma_y=\frac{\hbar}{2}\begin{bmatrix}0&-i\\i&0\end{bmatrix}$$
$$\hat S_z=\frac{\hbar}{2}\sigma_z=\frac{\hbar}{2}\begin{bmatrix}1&0\\0&-1\end{bmatrix}$$
\begin{align*}
\left < \hat S_x\right > &=\left < \chi_1\left|\hat S_x\right|\chi_1\right > \\
&=\begin{bmatrix}1&0\end{bmatrix}\frac{\hbar}{2}\begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}\\
&=0
\end{align*}
\begin{align*}
\left < \hat S_x^2\right > &=\left < \chi_1\left|\hat S_x\hat S_x\right|\chi_1\right > \\
&{\scriptstyle=\begin{bmatrix}1&0\end{bmatrix}\frac{\hbar}{2}\begin{bmatrix}0&1\\1&0\end{bmatrix}\frac{\hbar}{2}\begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}}\\
&=\frac{1}{4}\hbar^2
\end{align*}
Hence, answer is (D)
The differential cross-section for a central potential is equal to
$f(\theta,\phi)$
$f^*(\theta,\phi)$
$f^*(\theta,\phi)f(\theta,\phi)$
$|f(\theta,\phi)|$
where asymptotic form of the wave function of the relative motion is given by:
$$A\left[e^{ikz}+\frac{f(\theta,\phi)}{r}e^{ikr}\right]$$
Differential cross-section is given by $\frac{d\sigma}{d\Omega}=|f(\theta,\phi)|^2$.
Hence, answer is (C).
The de Broglie wavelength of a helium atom at 300 K is 0.06 $A^o$. The de Broglie wavelength of neon atom (5 times heavier
than helium) at 600 K will be:
6 Å
0.06 Å
$0.06\times\sqrt{10}$Å
$\frac{0.06}{\sqrt{10}}$Å
Thermal de Broglie wavelength is given by $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2mE}}$.
In the nonrelativistic case the effective kinetic energy of free particles is $E = \pi k_B T $.
$$\lambda=\frac{h}{\sqrt{2\pi mk_BT}}$$
$$\lambda_{He}\propto\frac{1}{\sqrt{m_{He}T}}$$
and$$\lambda_{Ne}\propto\frac{1}{\sqrt{m_{Ne}T}}$$
$$\frac{\lambda_{Ne}}{\lambda_{He}}=\frac{\sqrt{m_{He}T_{He}}}{\sqrt{m_{Ne}T_{Ne}}}$$
$$\lambda_{Ne}=\sqrt{\frac{m_{He}T_{He}}{m_{Ne}T_{Ne}}}\lambda_{He}$$
$\lambda_{Ne}=\sqrt{\frac{1\times 300}{5\times600}}0.6=\frac{0.6}{\sqrt{10}}$Å Hence, answer is (D)
If a charged particle $q$ moves along a circle of radius $r=100mm$ in a uniform magnetic field $B=10mT$, then the period of revolution of the particle $(m_p=1.67\times10^{-27}kg, q=1.6\times10^{-19}C)$
6.55 ms
6.55 $\mu$s
6.55 ns
3$\mu$s
For circular motion radial force is equal to force due to magnetic field.
$$\frac{mv^2}{r}=qvB$$
$$T=\frac{2\pi}{\omega}=\frac{2\pi r}{v}=\frac{2\pi m}{qB}$$
\begin{align*}
T&=\frac{2\times3.14\times1.67\times10^{-27}}{1.6\times10^{-19}\times10\times10^{-3}}\\
&=6.55\mu s
\end{align*}
No comments :
Post a Comment