Physics Resonance: Problem set 36 -->

Notice

Tuesday, 6 December 2016

Problem set 36

  1. For a finite square well potential in one dimension:
    1. It is possible that no bound state exits
    2. There is always at least one bound state
    3. Bound states have degeneracy = 2
    4. Energy levels of bound states are equally spaced
  2. A particle with spin $\frac{1}{2}$ is in state with eigenstate of $S_z$. Then the expectation values of $S_x$, $S_x^2$ in this state are given by:
    1. $-\frac{\hbar}{2}$, $\frac{1}{4}\hbar$
    2. $0$, $\frac{3}{4}\hbar^2$
    3. $\frac{\hbar}{2}$, $\frac{3}{4}\hbar^2$
    4. $0$, $\frac{1}{4}\hbar^2$
  3. The differential cross-section for a central potential is equal to
    1. $f(\theta,\phi)$
    2. $f^*(\theta,\phi)$
    3. $f^*(\theta,\phi)f(\theta,\phi)$
    4. $|f(\theta,\phi)|$
    where asymptotic form of the wave function of the relative motion is given by: $$A\left[e^{ikz}+\frac{f(\theta,\phi)}{r}e^{ikr}\right]$$
  4. The de Broglie wavelength of a helium atom at 300 K is 0.06 $A^o$. The de Broglie wavelength of neon atom (5 times heavier than helium) at 600 K will be:
    1. 6
    2. 0.06
    3. $0.06\times\sqrt{10}$
    4. $\frac{0.06}{\sqrt{10}}$
  5. If a charged particle $q$ moves along a circle of radius $r=100mm$ in a uniform magnetic field $B=10mT$, then the period of revolution of the particle $(m_p=1.67\times10^{-27}kg, q=1.6\times10^{-19}C)$
    1. 6.55 ms
    2. 6.55 $\mu$s
    3. 6.55 ns
    4. 3$\mu$s

No comments :

Post a Comment