Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Sunday, 18 December 2016
Problem set 42
The input signal for the equivalent circuit shown below can have a frequency between 10 Hz and 50 kHz, then the value of the coupling capacitor is:
$1\mu F$
$10 pF$
$1 pF$
$10\mu F$
For coupling capacitive reactance $X_C$ must be low. Since, $X_C=\frac{1}{2\pi fC}$, $X_C$ is inversely proportional to frequency $f$. Hence, value of $C$ is decided by the lowest frequency of operation. Now, in a circuit, for a coupling, the value of $C$ should be such that $X_C=\frac{\text{total resistance of circuit}}{10}$.
$${\scriptstyle \text{total resistance of circuit}=R=12k\Omega||24k\Omega||3k\Omega||6k\Omega}$$
$$\frac{1}{R}=\frac{1}{12}+\frac{1}{24}+\frac{1}{3}+\frac{1}{6}=\frac{15}{24}$$
$$R=\frac{24}{15}$$
$$X_C=\frac{R}{10}=\frac{24}{150}k\Omega$$
\begin{align*}
C&=\frac{1}{2\pi fX_C}\\
&=\frac{1}{2\times3.14\times10\times\frac{24}{150}\times10^3}\\
&=100\mu F
\end{align*}
However, if we take ${\scriptstyle X_C=\text{total resistance of circuit}=R=\frac{24}{15}}$, we get,
\begin{align*}
C&=\frac{1}{2\pi fX_C}\\
&=\frac{1}{2\times3.14\times10\times\frac{24}{15}\times10^3}\\
&=10\mu F
\end{align*}
Hence, answer is (D)
In a 3-input OP-AMP summing amplifier shown below, the output voltage $(v_0)$ is
-3 V
+3 V
+6 V
-9 V
Applying KCL law to inverting node $$\frac{v_1}{R_1}+\frac{v_2}{R_2}+\frac{v_3}{R_3}+\frac{v_0}{R_f}=0$$
\begin{align*}
v_0&=-R_f\left(\frac{v_1}{R_1}+\frac{v_2}{R_2}+\frac{v_3}{R_3}\right)\\
&={\scriptstyle -10^3\left(\frac{2}{3\times10^3}+\frac{3}{3\times10^3}+\frac{4}{3\times10^3}\right)=-3}\\
\end{align*}
Hence, answer is (A)
In the circuit given below what is the approximate ac voltage across the output resistor:
15 mV
150 mV
15 $\mu$V
15 V
This is a single stage amplifier.
$$v_0=A_vv_{in}$$
where, $A_v$ is ac voltage gain given by $A_v= $
The input impedance $(Z_{in(total)})$ of the common-emitter amplifier given below is:
$5k\Omega$
$4k\Omega$
$2k\Omega$
$20k\Omega$
As $\beta=200$, the value of the transistor base impedance $=\beta(r_e+R_E)=\beta r_e$, since $R_E=0$.
transistor base impedance $=\beta r_e=200\times25=5k\Omega$
$$Z_{in(total)}=20||\beta r_e$$
\begin{align*}
\frac{1}{Z_{in(total)}}&=\frac{1}{20}+\frac{1}{\beta r_e}\\
&=\frac{1}{20}+\frac{1}{5}=\frac{1}{4}
\end{align*}
$$Z_{in(total)}=4k\Omega$$
Hence, answer is (B)
The load voltage in a Zener circuit shown below with $V_z=15V$ is approximately
15 V
10 V
14.3 V
15.7 V
$$V_L=V_Z+V_{BE}=15-0.7=14.3 V$$
$V_{BE}$ negative because it has polarity opposite to that of $V_Z$.
Hence, answer is (C)
No comments :
Post a Comment