Physics Resonance: Problem set 79 -->

Notice

Thursday, 2 March 2017

Problem set 79

  1. An unperturbed two-level system has energy eigenvalues $E_1$ and $E_2$, and eigenfunctions $\begin{pmatrix}1\\0\end{pmatrix}$ and $\begin{pmatrix}0\\1\end{pmatrix}$ When perturbed, its Hamiltonian is represented by $\begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}$
    1. The first-order correction to $E_1$ is
      1. $4A$
      2. $2A$
      3. $A$
      4. 0
    2. The second-order correction to $E_1$ is
      1. 0
      2. $A$
      3. $\frac{A^2}{E_2-E_1}$
      4. $\frac{A^2}{E_1-E_2}$
    3. The first-order correction to the eigenfunetion $\begin{pmatrix}1\\0\end{pmatrix}$ is
      1. $\begin{pmatrix}0\\\frac{A^*}{E_1-E_2}\end{pmatrix}$
      2. $\begin{pmatrix}0\\1\end{pmatrix}$
      3. $\begin{pmatrix}\frac{A^*}{E_1-E_2}\\0\end{pmatrix}$
      4. $\begin{pmatrix}1\\1\end{pmatrix}$
  2. One of the eigen values of the matrix $\begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix}$ is 5
    1. The other two eigenvalues are
      1. 0 and 0
      2. 1 and 1
      3. 1 and -1
      4. -1 and -1
    2. The normalized eigenvector corresponding to the eigenvalue 5 is
      1. $\frac{1}{\sqrt{2}} \begin{pmatrix}0\\-1\\1\end{pmatrix}$
      2. $\frac{1}{\sqrt{2}} \begin{pmatrix}-1\\1\\0\end{pmatrix}$
      3. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\-1\end{pmatrix}$
      4. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\\0\end{pmatrix}$
  3. The powder diffraction pattern of a body centred cubic crystal is recorded by using $Cu K_\alpha$ X-rays of wavelength $1.54 \:A^o$.
    1. If the (002) planes diffract at $60^o$, the lattice parameter is
      1. $2.67 A^o$
      2. $3.08 A^o$
      3. $3.56 A^o$
      4. $5.34 A^o$
    2. Assuming the atomic mass of the constituent atoms to be 50.94 amu, the density of the crystal in units of kg m$^{-3}$ is
      1. $3.75 \times 10^3$
      2. $4.45 \times 10^3$
      3. $5.79 \times 10^3$
      4. $8.89 \times 10^3$

No comments :

Post a Comment