- An unperturbed two-level system has energy eigenvalues $E_1$ and $E_2$, and eigenfunctions $\begin{pmatrix}1\\0\end{pmatrix}$ and $\begin{pmatrix}0\\1\end{pmatrix}$ When perturbed, its Hamiltonian is represented by $\begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}$
- The first-order correction to $E_1$ is
- $4A$
- $2A$
- $A$
- 0
- The second-order correction to $E_1$ is
- 0
- $A$
- $\frac{A^2}{E_2-E_1}$
- $\frac{A^2}{E_1-E_2}$
- The first-order correction to the eigenfunetion $\begin{pmatrix}1\\0\end{pmatrix}$ is
- $\begin{pmatrix}0\\\frac{A^*}{E_1-E_2}\end{pmatrix}$
- $\begin{pmatrix}0\\1\end{pmatrix}$
- $\begin{pmatrix}\frac{A^*}{E_1-E_2}\\0\end{pmatrix}$
- $\begin{pmatrix}1\\1\end{pmatrix}$
- One of the eigen values of the matrix $\begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix}$ is 5
- The other two eigenvalues are
- 0 and 0
- 1 and 1
- 1 and -1
- -1 and -1
- The normalized eigenvector corresponding to the eigenvalue 5 is
- $\frac{1}{\sqrt{2}} \begin{pmatrix}0\\-1\\1\end{pmatrix}$
- $\frac{1}{\sqrt{2}} \begin{pmatrix}-1\\1\\0\end{pmatrix}$
- $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\-1\end{pmatrix}$
- $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\\0\end{pmatrix}$
- The powder diffraction pattern of a body centred cubic crystal is recorded by using $Cu K_\alpha$ X-rays of wavelength $1.54 \:A^o$.
- If the (002) planes diffract at $60^o$, the lattice parameter is
- $2.67 A^o$
- $3.08 A^o$
- $3.56 A^o$
- $5.34 A^o$
- Assuming the atomic mass of the constituent atoms to be 50.94 amu, the density of the crystal in units of kg m$^{-3}$ is
- $3.75 \times 10^3$
- $4.45 \times 10^3$
- $5.79 \times 10^3$
- $8.89 \times 10^3$
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 2 March 2017
Problem set 79
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment