Loading web-font TeX/Math/Italic
Physics Resonance: Problem set 79 -->

Notice

Thursday, 2 March 2017

Problem set 79

  1. An unperturbed two-level system has energy eigenvalues E_1 and E_2, and eigenfunctions \begin{pmatrix}1\\0\end{pmatrix} and \begin{pmatrix}0\\1\end{pmatrix} When perturbed, its Hamiltonian is represented by \begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}
    1. The first-order correction to E_1 is
      1. 4A
      2. 2A
      3. A
      4. 0
    2. The second-order correction to E_1 is
      1. 0
      2. A
      3. \frac{A^2}{E_2-E_1}
      4. \frac{A^2}{E_1-E_2}
    3. The first-order correction to the eigenfunetion \begin{pmatrix}1\\0\end{pmatrix} is
      1. \begin{pmatrix}0\\\frac{A^*}{E_1-E_2}\end{pmatrix}
      2. \begin{pmatrix}0\\1\end{pmatrix}
      3. \begin{pmatrix}\frac{A^*}{E_1-E_2}\\0\end{pmatrix}
      4. \begin{pmatrix}1\\1\end{pmatrix}
  2. One of the eigen values of the matrix \begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix} is 5
    1. The other two eigenvalues are
      1. 0 and 0
      2. 1 and 1
      3. 1 and -1
      4. -1 and -1
    2. The normalized eigenvector corresponding to the eigenvalue 5 is
      1. \frac{1}{\sqrt{2}} \begin{pmatrix}0\\-1\\1\end{pmatrix}
      2. \frac{1}{\sqrt{2}} \begin{pmatrix}-1\\1\\0\end{pmatrix}
      3. \frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\-1\end{pmatrix}
      4. \frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\\0\end{pmatrix}
  3. The powder diffraction pattern of a body centred cubic crystal is recorded by using Cu K_\alpha X-rays of wavelength 1.54 \:A^o.
    1. If the (002) planes diffract at 60^o, the lattice parameter is
      1. 2.67 A^o
      2. 3.08 A^o
      3. 3.56 A^o
      4. 5.34 A^o
    2. Assuming the atomic mass of the constituent atoms to be 50.94 amu, the density of the crystal in units of kg m^{-3} is
      1. 3.75 \times 10^3
      2. 4.45 \times 10^3
      3. 5.79 \times 10^3
      4. 8.89 \times 10^3

No comments :

Post a Comment