Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 2 March 2017
Problem set 79
An unperturbed two-level system has energy eigenvalues E_1 and E_2, and eigenfunctions
\begin{pmatrix}1\\0\end{pmatrix} and \begin{pmatrix}0\\1\end{pmatrix} When perturbed, its Hamiltonian is represented by \begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}
The first-order correction to E_1 is
4A
2A
A
0
The second-order correction to E_1 is
0
A
\frac{A^2}{E_2-E_1}
\frac{A^2}{E_1-E_2}
The first-order correction to the eigenfunetion \begin{pmatrix}1\\0\end{pmatrix} is
The perturbed Hamiltonian is given by H=H_0+H'H=\begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}
As E_1 and E_2 are eigenvalues
H_0=\begin{pmatrix}E_1&0\\0&E_2\end{pmatrix}H'=\begin{pmatrix}0&A\\A^*&0\end{pmatrix}
First order correction to energy E_1 is
\begin{align*}
E_1^{(1)}&=\left < \psi_1|H'|\psi_1 \right > \\
&=\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}0&A\\A^*&0\end{pmatrix} \begin{pmatrix}1\\0\end{pmatrix}\\
&=0
\end{align*}
Hence, answer is (D)
The second order correction to the energy is given by
\begin{align*}
E_n^{(2)}&=\sum\limits_{m\neq n}\frac{\left|\left < m|H'|n \right > \right|^2}{E_n^{(0)}-E_m^{(0)}}\\
E_1^{(2)}&=\sum\limits_{m\neq 1}\frac{\left|\left < m|H'|1 \right > \right|^2}{E_1^{(0)}-E_m^{(0)}}\\
&=\frac{\left|\left < 2|H'|1 \right > \right|^2}{E_1^{(0)}-E_2^{(0)}}\\
\left < 2|H'|1 \right >&=\!\begin{pmatrix}\!0\!&\!1\!\end{pmatrix}\!\begin{pmatrix}\!0\!&\!A\!\\\!A^*\!&\!0\!\end{pmatrix}\! \begin{pmatrix}\!1\!\\\!0\!\end{pmatrix}\\
&=A^*\\
E_1^{(2)}&=\frac{A^2}{E_1-E_2}
\end{align*}
Hence, answer is (D)
Wave corrected upto first order is given by
\psi_n^{(1)}=\!\psi_n^{(0)}\!+\!\sum\limits_{m\neq n}\!\frac{\left|\left < m|H'|n \right > \right|^2}{E_n^{(0)}-E_m^{(0)}}\psi_m^{(0)}\psi_1^{(1)}=\psi_1^{(0)}+\frac{\left|\left < 2|H'|1 \right > \right|^2}{E_1^{(0)}-E_2^{(0)}}\psi_2^{(0)}\psi_1^{(1)}=\begin{pmatrix}1\\0\end{pmatrix}+\frac{A^*}{E_1-E_2}\begin{pmatrix}0\\1\end{pmatrix}
Hence first order correction to the eigenfunction \begin{pmatrix}1\\0\end{pmatrix} is
\begin{pmatrix}0\\\frac{A^*}{E_1-E_2}\end{pmatrix}
Hence, answer is (A)
One of the eigen values of the matrix \begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix} is 5
The other two eigenvalues are
0 and 0
1 and 1
1 and -1
-1 and -1
The normalized eigenvector corresponding to the eigenvalue 5 is
Let \lambda_1 and \lambda_2 be other eigenvalues
Det=5\times\lambda_1\times\lambda_2=-5\lambda_1\times\lambda_2=-1\quad---(1)
Trace of matrix=sum of eigenvalues
5+\lambda_1+\lambda_2=5\lambda_1+\lambda_2=0\quad---(2)
Solving equation (1) and (2) we get
\lambda_1=1\quad\lambda_2=-1
Hence, answer is (C)
Eigenvalue equation for \lambda=5 is A-\lambda=0\begin{pmatrix}-3&3&0\\3&-3&0\\0&0&-4\end{pmatrix}\!\begin{pmatrix}x\\y\\z\end{pmatrix}\!=\!\begin{pmatrix}0\\0\\0\end{pmatrix}-3x+3y=03x-3y=0-4z=0\Rightarrow z=0, x=y=c
Applying normalization condition
|c|^2+|c|^2+0=1\Rightarrow c=\frac{1}{\sqrt{2}}\begin{pmatrix}x\\y\\z\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\0\end{pmatrix}
Hence, answer is (d)
The powder diffraction pattern of a body centred cubic crystal is recorded by using Cu K_\alpha X-rays of wavelength 1.54 \:A^o.
If the (002) planes diffract at 60^o, the lattice parameter is
2.67 A^o
3.08 A^o
3.56 A^o
5.34 A^o
Assuming the atomic mass of the constituent atoms to be 50.94 amu, the density of the crystal in units of kg m^{-3} is
3.75 \times 10^3
4.45 \times 10^3
5.79 \times 10^3
8.89 \times 10^3
Bragg's law is
2d\sin\theta=n\lambda
For first order pattern n=1\begin{align*}
d&=\frac{\lambda}{2\sin\theta}\\
&=\frac{1.54}{2\times\sin30}\\
&=1.54
\end{align*}
For cubic system
d=\frac{a}{\sqrt{h^2+k^2+l^2}}a=d\sqrt{h^2+k^2+l^2}=3.08
Hence, answer is (B)
For body centered cubic crystal there two atoms per unit cell.
\rho=\frac{mass~of~two~atoms}{volume~of~cell}
1 atomic mass unit = 1.66053886 \times 10^{-27} kilograms
\rho={\textstyle \frac{2\times50.94\times 1.66053886 \times 10^{-27}}{(3.08\times 10^{-10})^3}}\rho=5.79 \times 10^{3}
No comments :
Post a Comment