Physics Resonance: March 2017 -->

Notice

Friday, 24 March 2017

Problem set 90

  1. A plane polarized EM wave of frequency $\omega$ is incident at an angle $\theta$ in a rectangular waveguide of resonant frequency $\omega_{mn}$. Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of :
    1. $\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}$
    2. $c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}$
    3. $\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)}}$
    4. $c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}$
  2. The electric field of an electromagnetic wave propagating in the free space is given by : $\vec E(r,t)=E_0\hat z\cos{\left[200\sqrt{3}\pi x-200\pi y-\omega t\right]}$. Then the wave vector $\vec k$ is given by
    1. $200\frac{\sqrt{3}}{2}\pi\hat x-200\pi\hat y$
    2. $400\pi\left[\frac{\sqrt{3}}{2}\hat x-\frac{1}{2}\hat y\right]$
    3. $200\sqrt{3}\pi\hat x$
    4. $-200\pi\hat y$
  3. The Ampere's law in the free space takes the form:
    1. $\vec\nabla\times\vec B=\mu_0\vec J$
    2. $\vec\nabla\times\vec B=\mu_0\vec J+\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
    3. $\vec\nabla\times\vec B=\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
    4. $\vec\nabla\times\vec B=\mu_0\vec J-\epsilon_0\mu_0\frac{\partial\vec E}{\partial t}$
  4. An electric charge $+Q$ is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is :
    1. $\frac{Q}{\epsilon_0}$
    2. $\frac{Q}{10\epsilon_0}$
    3. $\frac{Q}{6\epsilon_0}$
    4. $\frac{10Q}{\epsilon_0}$
  5. A field at certain point in the space is expressed as the potential function $V=3x^2z-xy^3+z$. Then the potential $V$ at point $(2,-1,1)$ is :
    1. 15 V
    2. 13 V
    3. 0 V
    4. 8 V

Wednesday, 22 March 2017

Problem set 89

  1. A particle is at rest in rotating frame of reference. The pseudoforce(s) acting on the particle is(are)
    1. None of these
    2. Only the Coriolis force
    3. only the centrifugal force
    4. both Coriolis force and centrifugal force
  2. A thin rigid rod of length $l$ is moving inside a sphere of radius $R(R>l)$ such that both of its ends are in contact with inner surface of the sphere. The degrees of freedom of the rod are:
    1. Four
    2. Three
    3. Two
    4. One
  3. For a system shown in figure given below, the Lagrangian function is given by : ($V=0$ at $y=0$)
    1. $L=M\dot y^2+Mgy$
    2. $L=\frac{1}{2}M\dot y^2+Mgy$
    3. $L=\frac{1}{2}M\dot y^2-Mg(y-x)$
    4. $L=M\dot y^2+Mg(y-x)$
  4. "Hamiltonian $H$ is not equal to the total energy $E$ (sum of kinetic and potential energies)", hold true for a system characterized with:
    1. conservative forces and time-independent constraints
    2. conservative forces and time-dependent constraints
    3. dissipative forces and time-independent constraints
    4. for every system irrespective of nature of forces and constraints
  5. A particle moves under the action of force $\vec F=-\frac{1}{r^n}\hat r$. The particle moves in a closed orbit if:
    1. n=-1 or n=2
    2. n=1 or n=-2
    3. n=-1 or n=-2
    4. n=1 or n=2

Monday, 20 March 2017

Problem set 88

  1. The moment of inertia of a thin disc of radius $R$ about an axis passing through its center and perpendicular to the plane of disc is:
    1. $MR^2$
    2. $\frac{2}{3}MR^2$
    3. $\frac{3}{2}MR^2$
    4. $\frac{1}{2}MR^2$
  2. A coin is tossed four times what is the probability of getting two heads and two tails?
    1. $\frac{3}{8}$
    2. $\frac{1}{2}$
    3. $\frac{5}{8}$
    4. $\frac{3}{4}$
  3. Consider three vectors $\vec a=\hat i+\hat j+\hat k$, $\vec b=\hat i-\hat j+\hat k$ and $\vec c=\hat i-\hat j-\hat k$. Which of the following statement is true?
    1. $\vec a$, $\vec b$, $\vec c$ are linearly independent
    2. $\vec a$, $\vec b$ are linearly independent
    3. $\vec b$ and $\vec c$ are right angle to each other
    4. $\vec a$ and $\vec c$ are parallel
  4. Which of the following defines a conservative force field?
    1. $\vec\nabla\cdot\vec F=0$
    2. $\vec\nabla\times\vec F=0$
    3. $\oint\vec F\cdot\vec dr=0$
    4. $\frac{d\vec F}{dt}=0$
  5. $\nabla\left(\frac{1}{|\vec r|}\right)$ is given by
    1. $\frac{1}{r}\hat r$
    2. $\frac{1}{r^3}(\hat i+\hat j+\hat k)$
    3. $-\frac{\vec r}{r^3}$
    4. $r(\hat i-\hat j-\hat k)$

Saturday, 18 March 2017

Problem set 87

  1. Eigenvalues of the matrix $\begin{bmatrix}1&-1\\1&1\end{bmatrix}$
    1. 1, -1
    2. -1, $-i$
    3. $i$, $-i$
    4. $1+i$, $1-i$
  2. Consider an $n$-MOSFET with the following parameters: current drive strength $K= 60 \:\mu A/V^2$, breakdown voltage $BV_{DS}=10\: V$, ratio of effective gate width to the channel length $\frac{W}{L}=5$ and threshold voltage $V_{th}=0.5V$. In the circuit given below, this $n$-MOSFET is operating in the
    1. ohmic region
    2. cut-off region
    3. saturation region
    4. breakdown region
  3. Particular integral of first order linear differential $\frac{dy}{dx}=x+y$ is given by:
    1. $y(x)=-x-1$
    2. $y(x)=x+1$
    3. $y(x)=x-1$
    4. $y(x)=-x+1$
  4. The Fourier transform of a Gaussian function is of the form:
    1. Exponential
    2. Lorentzian
    3. Gaussian
    4. Screened coulomb
  5. The real part of $\log{(3+4i)}$ is :
    1. $\log2$
    2. $\log3$
    3. $\log4$
    4. $\log5$

Thursday, 16 March 2017

Problem set 86

  1. A function $f(x)$ satisfies the differential equation $\frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a)$, where $\omega$ is positive. The Fourier transform $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$ of $f$, and the solution of the equation are, respectively,
    1. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)$
    2. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}e^{-\omega|x-a|}$
    3. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)$
    4. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)$
  2. Let $E_s$ denote the contribution of the surface energy per nucleon in the liquid drop model. The ratio $E_s\left(^{27}_{13}Al\right):E_s\left(^{64}_{30}Al\right)$ is
    1. 2:3
    2. 4:3
    3. 5:3
    4. 3:2
  3. According to the shell model, the nuclear magnetic moment of the $^{27}_{13}Al$ nucleus is (Given that for a proton $g_l=1$, $g_s=5.586$, and for a neutron $g_l=0$, $g_s=-3.826$)
    1. $-1.913\mu_N$
    2. $14.414\mu_N$
    3. $4.793\mu_N$
    4. 0
  4. The ground state electronic configuration of $^{22}Ti$ is $[Ar]3d^54s^2$. Which state, in the standard spectroscopic notations, is not possible in this configuration?
    1. $^1F_{3}$
    2. $^1S_{0}$
    3. $^1D_{2}$
    4. $^3P_{0}$
  5. The band energy of an electron in a crystal for a particular $k$-direction has the form $\epsilon(k)=A-B\cos{2ka}$, where $A$ and $B$ are positive constants and $0 < ka <\pi$. The electron has a hole-like behaviour over the following range of $k$:
    1. $\frac{\pi}{4} < ka < \frac{3\pi}{4}$
    2. $\frac{\pi}{2} < ka < \pi$
    3. $0 < ka < \frac{\pi}{4}$
    4. $\frac{\pi}{2} < ka < \frac{3\pi}{4}$

Tuesday, 14 March 2017

Problem set 85

  1. In a normal Zeeman effect experiment using a magnetic field of strength 0.3 T, the splitting between the components of a 660 nm spectral line is
    1. 12 pm
    2. 10 pm
    3. 8 pm
    4. 6 pm
  2. What is the Fourier transform $\int dxe^{ikx}f(x)$ of $f(x)=\delta(x)+\sum\limits_{n=1}^\infty\frac{d^n}{dx^n}\delta(x)$, where $\delta(x)$ is the Dirac delta-function?
    1. $\frac{1}{1-ik}$
    2. $\frac{1}{1+ik}$
    3. $\frac{1}{k+i}$
    4. $\frac{1}{k-i}$
  3. A canonical transformation $(q,p)\rightarrow (Q,P)$ is made through the generating function $F(q,P)=q^2P$ on the Hamiltonian $H(q,p)=\frac{p^2}{2\alpha q^2}+\frac{\beta}{4}q^4$ where $\alpha$ and $\beta$ are constants. The equations of motion for $(Q,P)$ are
    1. $\dot Q=P/\alpha$ and $\dot P=-\beta Q$
    2. $\dot Q=4P/\alpha$ and $\dot P=-\beta Q/2$
    3. $\dot Q=P/\alpha$ and $\dot P=-\frac{2P^2}{Q}-\beta Q$
    4. $\dot Q=2P/\alpha$ and $\dot P=-\beta Q$
  4. The internal energy $E(T)$ of a system at a fixed volume is found to depend on the temperature $T$ as $E(T)=aT^2+bT^4$. Then the entropy $S(T)$, as a function of temperature, is
    1. $\frac{1}{2}aT^2+\frac{1}{4}bT^4$
    2. $2aT^2+4bT^4$
    3. $2aT+\frac{4}{3}bT^3$
    4. $2aT+2bT^3$
  5. Consider a gas of Cs atoms at a number density of $10^{12}$ atoms/cc. When the typical inter-particle distance is equal to the thermal de Broglie wavelength of the particles, the temperature of the gas is nearest to (Take the mass of a Cs atom to be $22.7\times10^{-26}$ kg.)
    1. $1\times10^{-9}$ K
    2. $7\times10^{-5}$ K
    3. $1\times10^{-3}$ K
    4. $2\times10^{-8}$ K

Sunday, 12 March 2017

Problem set 84

  1. In the schematic figure given below, assume that the propagation delay of each logic gate is $t_{gate}$.
    The propagation delay of the circuit will be maximum when the logic inputs A and B make the transition
    1. $(0,1)\rightarrow(1,1)$
    2. $(1,1)\rightarrow(0,1)$
    3. $(0,0)\rightarrow(1,1)$
    4. $(0,0)\rightarrow(0,1)$
  2. Given the input voltage $V_i$, which of the following waveforms correctly represents the output voltage $V_0$ in the circuit shown below?
  3. In finding the roots of the polynomial $f(x)=3x^3-4x-5$ using the iterative Newton-Raphson method, the initial guess is taken to be $x=2$. In the next iteration its value is nearest to
    1. 1.671
    2. 1.656
    3. 1.559
    4. 1.551
  4. For a particle of energy $E$ and $P$ momentum (in a frame $F$), the rapidity $y$ is defined as $y=\frac{1}{2}\ln{\left(\frac{E+p_3c}{E-p_3c}\right)}$. In a frame $F'$ moving with velocity $v=(0,0,\beta c)$ with respect to $F$, the rapidity $y'$ will be
    1. $y'=y+\frac{1}{2}\ln{\left(1-\beta^2\right)}$
    2. $y'=y-\frac{1}{2}\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
    3. $y'=y+\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
    4. $y'=y+2\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
  5. The partition function of a single gas molecule is $Z_\alpha$. The partition function of $N$ such non-interacting gas molecules is given by
    1. $\frac{(Z_\alpha)^N}{N!}$
    2. $(Z_\alpha)^N$
    3. $N(Z_\alpha)$
    4. $\frac{(Z_\alpha)^N}{N}$

Friday, 10 March 2017

Problem set 83

  1. Suppose that the Coulomb potential of the hydrogen atom is changed by adding an inverse-square term such that the total potential is $V(\vec r)=-\frac{Ze^2}{r}+\frac{g}{r^2}$, where $g$ is a constant. The energy eigenvalues $E_{nlm}$ in the modified potential
    1. depend on $n$ and $l$, but not on $m$
    2. depend on $n$ but not on $l$ and $m$
    3. depend on $n$ and $m$, but not on $l$
    4. depend explicitly on all three quantum numbers $n$, $l$ and $m$
  2. When an ideal monatomic gas is expanded adiabatically from an initial volume $V_0$ to $3V_0$, its temperature changes from $T_0$ to $T$. Then the ratio $T/T_0$is
    1. $\frac{1}{3}$
    2. $\left(\frac{1}{3}\right)^{2/3}$
    3. $\left(\frac{1}{3}\right)^{1/3}$
    4. 3
  3. A box of volume $V$ containing $N$ molecules of an ideal gas, is divided by a wall with a hole into two compartments. If the volume of the smaller compartment is $V/3$, the variance of the number of particles in it, is
    1. $N/3$
    2. $2N/9$
    3. $\sqrt{N}$
    4. $\sqrt{N}/3$
  4. A gas of non-relativistic classical particles in one dimension is subjected to a potential $V(x)=\alpha|x|$ (where $\alpha$ is a constant). The partition function is ($\beta=\frac{1}{k_BT}$)
    1. $\sqrt{\frac{4m\pi}{\beta^3\alpha^2h^2}}$
    2. $\sqrt{\frac{2m\pi}{\beta^3\alpha^2h^2}}$
    3. $\sqrt{\frac{8m\pi}{\beta^3\alpha^2h^2}}$
    4. $\sqrt{\frac{3m\pi}{\beta^3\alpha^2h^2}}$
  5. The dependence of current $I$ on the voltage $V$ of a certain device is given by $$I=I_0\left(1-\frac{V}{V_0}\right)^2$$ where $I_0$ and $V_0$ are constants. In an experiment the current $I$ is measured as the voltage $V$ applied across the device is increased. The parameters $V_0$ and $\sqrt{I_0}$ can be graphically determined as
    1. the slope and the y-intercept of the $I-V^2$ graph
    2. the negative of the ratio of the y-intercept and the slope, and the y-intercept of the $I-V^2$ graph
    3. the slope and the y-intercept of the $\sqrt{I}-V$ graph
    4. the negative of the ratio of the y-intercept and the slope, and the y-intercept of the $\sqrt{I}-V$ graph

Wednesday, 8 March 2017

Problem set 82

  1. Two parallel plate capacitors, separated by distances $x$ and $1.1x$ respectively, have a dielectric material of dielectric constant 3.0 inserted between the plates, and are connected to a battery of voltage $V$. The difference in charge on the second capacitor compared to the first is
    1. +66%
    2. +20%
    3. -3.3%
    4. -10%
  2. The state of a particle of mass $m$ in a one-dimensional rigid box in the interval 0 to $L$ is given by the normalised wavefunction $\psi(x)\!=\!\!\sqrt{\frac{2}{L}}\!\!\left(\frac{3}{5}\sin{\left(\frac{2\pi x}{L}\right)}+\frac{4}{5}\sin{\left(\frac{4\pi x}{L}\right)}\!\right)$. If its energy is measured, the possible outcomes and the average value of energy are, respectively
    1. $\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{50}\frac{h^2}{mL^2}$
    2. $\frac{h^2}{8mL^2}$, $\frac{h^2}{2mL^2}$ and $\frac{19}{40}\frac{h^2}{mL^2}$
    3. $\frac{h^2}{2mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{19}{10}\frac{h^2}{mL^2}$
    4. $\frac{h^2}{8mL^2}$, $\frac{2h^2}{mL^2}$ and $\frac{73}{200}\frac{h^2}{mL^2}$
  3. If $\hat L_x$, $\hat L_y$ and $\hat L_z$ are the components of the angular momentum operator in three dimensions, the commutator $\left[\hat L_x, \hat L_x\hat L_y\hat L_z\right]$ may be simplified to
    1. $i\hbar\hat L_x\left(\hat L_z^2-\hat L_y^2\right)$
    2. $i\hbar\hat L_z\hat L_y\hat L_x$
    3. $i\hbar\hat L_x\left(2\hat L_z^2-\hat L_y^2\right)$
    4. 0
  4. The eigenstates corresponding to eigen-values $E_1$ and $E_2$ of a time-independent Hamiltonian are $|1 > $ and $|2 > $ respectively. If at $t=0$, the system is in a state $ |\psi(t=0) > =\sin\theta |1 > +\cos\theta |2 > $ the value of $< \psi(t)|\psi(t) > $ at time $t$ will be
    1. 1
    2. $(E_1\!\sin^2\theta\!+\!E_2\!\cos^2\theta)/\!\sqrt{E_1^2\!+\!E_2^2}$
    3. $e^{iE_1t/\hbar}\sin\theta+e^{iE_2t/\hbar}\cos\theta$
    4. $e^{-iE_1t/\hbar}\sin^2\theta+e^{-iE_2t/\hbar}\cos^2\theta$
  5. The specific heat per molecule of a gas of diatomic molecules at high temperatures is
    1. $8k_B$
    2. $3.5k_B$
    3. $4.5k_B$
    4. $3k_B$

Monday, 6 March 2017

Problem set 81

  1. The Gauss hypergeometric function $F(a,b,c;z)$, defined by the Taylor series expansion around $z=0$ as $${\scriptstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n}$$ satisfies the recursion relation
    1. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a-1,b-1,c-1;z)}$
    2. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a+1,b+1,c+1;z)}$
    3. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a-1,b-1,c-1;z)}$
    4. ${\scriptstyle \frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a+1,b+1,c+1;z)}$
  2. Let $(x,y)$ and $(x',y')$ be the coordinate systems used by the observers $O$ and $O'$, respectively. Observer moves with a velocity $v= \beta c$ along their common positive $x$-axis. If $x_+=x+ct$ and $x_-=x-ct$ are the linear combinations of the coordinates, the Lorentz transformation relating $O$ and $O'$ takes the form
    1. $x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$
    2. $x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+$ and $x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-$
    3. $x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$
    4. $x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+$ and $x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-$
  3. A particle of mass $m$ is constrained to move in a vertical plane along a trajectory given by $x=A\cos\theta$, $y=A\sin\theta$, where $A$ is constant.
    1. The Lagrangian of the particle is
      1. $\frac{1}{2}mA^2\dot\theta^2-mgA\cos\theta$
      2. $\frac{1}{2}mA^2\dot\theta^2-mgA\sin\theta$
      3. $\frac{1}{2}mA^2\dot\theta^2$
      4. $\frac{1}{2}mA^2\dot\theta^2+mgA\cos\theta$
    2. The equation of motion of particle is
      1. $\ddot\theta-\frac{g}{A}\cos\theta=0$
      2. $\ddot\theta+\frac{g}{A}\sin\theta=0$
      3. $\ddot\theta=0$
      4. $\ddot\theta-\frac{g}{A}\sin\theta=0$
  4. The $x$- and $z$-components of a static magnetic field in a region are $B_x=B_0(x^2-y^2)$ and $B_z=0$, respectively. Which of the following solutions for its $y$-component is consistent with the Maxwell equations?
    1. $B_y=B_0xy$
    2. $B_y=-2B_0xy$
    3. $B_y=B_0(x^2-y^2)$
    4. $B_y=B_0(\frac{1}{3}x^3-xy^2)$
  5. A magnetic field $\vec B$ is $B\hat z$ in the region $x > 0$ and zero elsewhere. A rectangular loop, in the $xy$-plane, of sides $l$ (along the $x$-direction) and $h$ (along the $y$-direction) is inserted into the $x > 0$ region from the $x < 0$ region at a constant velocity $\vec v =v \hat x$. Which of the following values of $l$ and $h$ will generate the largest EMF?
    1. $l=8$, $h=3$
    2. $l=4$, $h=6$
    3. $l=6$, $h=4$
    4. $l=12$, $h=2$

Saturday, 4 March 2017

Problem set 80

  1. A dielectric sphere of radius $R$ carries polarization $\vec P = kr^2\hat r$, where $r$ is the distance from the centre and $k$ is a constant. In the spherical polar coordinate system, $\hat r$, $\hat \theta$ and $\hat \phi$ are the unit vectors.
    1. The bound volume charge density inside the sphere at a distance $r$ from the centre is
      1. $-4kR$
      2. $-4kr$
      3. $-4kr^2$
      4. $-4kr^3$
    2. The electric field inside the sphere at a distanced $d$ from the centre is
      1. $\frac{-kd^2}{\epsilon_0}\hat r$
      2. $\frac{-kR^2}{\epsilon_0}\hat r$
      3. $\frac{-kd^2}{\epsilon_0}\hat\theta$
      4. $\frac{-kR^2}{\epsilon_0}\hat\theta$
  2. Let $X$ and $Y$ be two independent random variables, each of which follow a normal distribution with the same standard deviation $\sigma$, but with means $+\mu$ and $-\mu$, respectively. Then the sum follows a
    1. distribution with two peaks at $\pm\mu$ and mean $0$ and standard deviation $\sigma\sqrt{2}$
    2. normal distribution with mean 0 and standard deviation $2\sigma$
    3. distribution with two peaks at $\pm\mu$ and mean 0 and standard deviation $2\sigma$
    4. normal distribution with mean 0 and standard deviation $\sigma\sqrt{2}$
  3. Using dimensional analysis, Planck defined a characteristic temperature $T_p$ from powers of the gravitational constant $G$, Planck’s constant $h$, Boltzmann constant $k_B$ and the speed of light $c$ in vacuum. The expression for $T_p$ is proportional to
    1. $\sqrt{\frac{hc^5}{k_B^2G}}$
    2. $\sqrt{\frac{hc^3}{k_B^2G}}$
    3. $\sqrt{\frac{G}{hc^4k_B^2}}$
    4. $\sqrt{\frac{hk_B^2}{Gc^3}}$
  4. A ball of mass $m$, initially at rest, is dropped from a height of 5 meters. If the coefficient of restitution is 0.9, the speed of the ball just before it hits the floor the second time is approximately (take $g = 9.8\: m/s^2$)
    1. 9.80 m/s
    2. 9.10 m/s
    3. 8.91 m/s
    4. 7.02 m/s

Thursday, 2 March 2017

Problem set 79

  1. An unperturbed two-level system has energy eigenvalues $E_1$ and $E_2$, and eigenfunctions $\begin{pmatrix}1\\0\end{pmatrix}$ and $\begin{pmatrix}0\\1\end{pmatrix}$ When perturbed, its Hamiltonian is represented by $\begin{pmatrix}E_1&A\\A^*&E_2\end{pmatrix}$
    1. The first-order correction to $E_1$ is
      1. $4A$
      2. $2A$
      3. $A$
      4. 0
    2. The second-order correction to $E_1$ is
      1. 0
      2. $A$
      3. $\frac{A^2}{E_2-E_1}$
      4. $\frac{A^2}{E_1-E_2}$
    3. The first-order correction to the eigenfunetion $\begin{pmatrix}1\\0\end{pmatrix}$ is
      1. $\begin{pmatrix}0\\\frac{A^*}{E_1-E_2}\end{pmatrix}$
      2. $\begin{pmatrix}0\\1\end{pmatrix}$
      3. $\begin{pmatrix}\frac{A^*}{E_1-E_2}\\0\end{pmatrix}$
      4. $\begin{pmatrix}1\\1\end{pmatrix}$
  2. One of the eigen values of the matrix $\begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix}$ is 5
    1. The other two eigenvalues are
      1. 0 and 0
      2. 1 and 1
      3. 1 and -1
      4. -1 and -1
    2. The normalized eigenvector corresponding to the eigenvalue 5 is
      1. $\frac{1}{\sqrt{2}} \begin{pmatrix}0\\-1\\1\end{pmatrix}$
      2. $\frac{1}{\sqrt{2}} \begin{pmatrix}-1\\1\\0\end{pmatrix}$
      3. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\-1\end{pmatrix}$
      4. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\\0\end{pmatrix}$
  3. The powder diffraction pattern of a body centred cubic crystal is recorded by using $Cu K_\alpha$ X-rays of wavelength $1.54 \:A^o$.
    1. If the (002) planes diffract at $60^o$, the lattice parameter is
      1. $2.67 A^o$
      2. $3.08 A^o$
      3. $3.56 A^o$
      4. $5.34 A^o$
    2. Assuming the atomic mass of the constituent atoms to be 50.94 amu, the density of the crystal in units of kg m$^{-3}$ is
      1. $3.75 \times 10^3$
      2. $4.45 \times 10^3$
      3. $5.79 \times 10^3$
      4. $8.89 \times 10^3$