For a polyatomic molecule containing $n$ atoms, the total number of coordinates is $3n$. Out of these, 3 coordinates are taken up for the translational motion of the molecule as a whole and 3 for rotational motion. Hence, vibrational degrees of freedom is
$(3n - 6)$. However, for a linear molecule, the rotational motion along the molecular axis is not
meaningful as the rotated configuration is indistinguishable from the original
configuration. Therefore, for a linear molecule, there are two rotational degrees of
freedom and $(3n- 5)$ vibrational degrees of freedom. According to equipartition theorem, each degree of freedom has energy $\frac{1}{2}kT$. Hence, vibrational energy consider of a linear molecule is given by $(3n-5)\frac{kT}{2}$. Hence energy of $N$ linear molecules is
$$E=(3n-5)\frac{NkT}{2}$$
$$C_v=\frac{\partial E}{\partial T}=(3n-5)\frac{Nk}{2}$$
Hence, answer is (B)
$$E_n=(n+\frac{1}{2})\hbar\omega$$
\begin{align*}
z&=\sum\limits_{n=0}^{\infty}e^{-\beta E_n}\\
&=\sum\limits_{n=0}^{\infty}e^{-\beta (n+\frac{1}{2})\hbar\omega}\\
&=e^{ \frac{-\beta\hbar\omega}{2}}\sum\limits_{n=0}^{\infty}e^{-\beta n\hbar\omega}\\
z&=e^{ \frac{-\beta\hbar\omega}{2}}\left(1+e^{-\beta \hbar\omega}+e^{-2\beta \hbar\omega}+\cdots\right)\\
\end{align*}
This is a geometric series where each term is obtained from previous term by multiplying $e^{-\beta \hbar\omega}$. Hence,
$$\left(1+e^{-\beta \hbar\omega}+e^{-2\beta \hbar\omega}+..\right)\!\!=\!\!\frac{1}{1-e^{-\beta\hbar\omega}}$$
$$z=\frac{e^{-\beta\hbar\omega/2}}{1-e^{-\beta\hbar\omega}}$$
Hence, answer is (D)
$\Delta t=30 ms=30\times10^{-3}s$, $P_{avg}=0.6 \text{watt per pulse}$, $\lambda=640 nm=640\times10^{-9}m$
Energy per pulse is power times pulse duration.
\begin{align*}
E_{pulse}&=P_{avg}\Delta t\\
&=0.6\times30\times10^{-3}\\
&=0.018 joule
\end{align*}
Energy per photon is given by Planck formula.
\begin{align*}
E_{photon}&=h\nu=\frac{hc}{\lambda}\\
&=\frac{6.63\times10^{-34}\times3\times10^8}{640\times10^{-9}}\\
&=0.031078125\times10^{-17} joule
\end{align*}
Number of photons per pulse is just energy per pulse divided by energy per photon
\begin{align*}
N&=\frac{E_{pulse}}{E_{photon}}\\
&=\frac{0.018}{0.031078125\times10^{-17}}\\
&=5.8\times10^{16}
\end{align*}
Hence, answer is (C)
$$m^*=\frac{\hbar^2}{\frac{\partial^2\epsilon_k}{\partial k^2}}$$
At first Brillouin zone boundary $(k_x,k_y,k_z)=\left(\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}\right)$. Let us consider only first term in energy i.e.
$$\epsilon_{k_x} = \beta( \cos{k_xa})$$
$$\frac{\partial\epsilon_{k_x}}{\partial k}=\beta\left( -a\sin{k_xa}\frac{\partial k_x}{\partial k}\right)$$
Using $k=\sqrt{k_x^2+k_y^2+k_z^2}$
$$\frac{\partial k_x}{\partial k}=\frac{ k}{ k_x}$$
$$\frac{\partial\epsilon_{k_x}}{\partial k}=\beta\left( -a\frac{ k}{ k_x}\sin{k_xa}\right)$$
\begin{align*}
\frac{\partial^2\epsilon_{k_x}}{\partial k^2}&=\beta\left( -a\frac{ 1}{ k_x}\sin{k_xa}\right.\\
&~~~-ak\sin{k_xa}\frac{ \partial}{\partial k} \frac{1}{k_x}\\
&\left.~~~-a^2\frac{ k^2}{ k_x^2}\cos{k_xa}\right)
\end{align*}
\begin{align*}
\frac{\partial^2\epsilon_{k_x}}{\partial k^2}\left|_{k_x,k_y,k_z=\frac{\pi}{a}}\right.&=\beta\left( a^2\frac{ k^2}{ k_x^2}\right)\\
&=\beta a^2\left( \frac{ 3\frac{ \pi^2}{ a^2}}{ \frac{ \pi^2}{ a^2}}\right)\\
&=3\beta a^2
\end{align*}
Similarly,
$$\frac{\partial^2\epsilon_{k_y}}{\partial k^2}=3\beta a^2$$
$$\frac{\partial^2\epsilon_{k_z}}{\partial k^2}=3\beta a^2$$
$$m^*=\frac{\hbar^2}{3\beta a^2}$$
Hence, answer is (D)
No comments :
Post a Comment