- Consider a system of $N$ linear polyatomic molecules. Each molecule consists of $n$ atoms. At high temperature the vibrational contribution to the specific heat is
- $(3n-5)kN$
- $(3n-5)\frac{kN}{2}$
- $(3n-6)kN$
- $(3n-6)\frac{kN}{2}$
- The partition function $z(T)$ of a linear quantum mechanical harmonic oscillator in thermal equilibrium with a heat reservoir at temperature $T$ is given by:
- $\frac{e^{-\beta\hbar\omega}}{1-e^{-\beta\hbar\omega}}$
- $\frac{e^{-\beta\hbar\omega}}{1+e^{-\beta\hbar\omega}}$
- $\frac{e^{-\beta\hbar\omega/2}}{1+e^{-\beta\hbar\omega}}$
- $\frac{e^{-\beta\hbar\omega/2}}{1-e^{-\beta\hbar\omega}}$
- The output of a laser has a pulse width of 30 ms and average output power of 0.6 watt per pulse. If the wavelength of the laser light is 640 nm. How many photon does each pulse contain?
- $2.9\times10^{18}$
- $3.5\times10^{18}$
- $5.8\times10^{15}$
- $6.5\times10^{16}$
- In a band structure calculation, the dispersion relation for electrons is found to be $$\epsilon_k = \beta( \cos{k_xa} + \cos{k_ya} +\cos{k_za}),$$ where $\beta$ is a constant and $a$ is the lattice constant. The effective mass at the boundary of the first Brillouin zone is
- $\frac{2\hbar^2}{5\beta a^2}$
- $\frac{4\hbar^2}{5\beta a^2}$
- $\frac{\hbar^2}{2\beta a^2}$
- $\frac{\hbar^2}{3\beta a^2}$
- Consider the energy level diagram shown below, which corresponds to the molecular nitrogen laser. If the pump rate $R$ is $10^{20}$ atoms cm$^{-3}$ s$^{-1}$ and the decay routes are as shown with $\tau_{21} =20\: ns$ and. $\tau_{1} = 1\: \mu s$, the equilibrium populations of states 2 and 1 are, respectively,
- $10^{14}$ cm$^{-3}$ and $2\times10^{12}$ cm$^{-3}$
- $2\times10^{12}$ cm$^{-3}$ and $10^{14}$ cm$^{-3}$
- $2\times10^{12}$ cm$^{-3}$ and $2\times10^{6}$ cm$^{-3}$
- zero and $10^{20}$ cm$^{-3}$
No comments :
Post a Comment