For a polyatomic molecule containing n atoms, the total number of coordinates is 3n. Out of these, 3 coordinates are taken up for the translational motion of the molecule as a whole and 3 for rotational motion. Hence, vibrational degrees of freedom is
(3n - 6). However, for a linear molecule, the rotational motion along the molecular axis is not
meaningful as the rotated configuration is indistinguishable from the original
configuration. Therefore, for a linear molecule, there are two rotational degrees of
freedom and (3n- 5) vibrational degrees of freedom. According to equipartition theorem, each degree of freedom has energy \frac{1}{2}kT. Hence, vibrational energy consider of a linear molecule is given by (3n-5)\frac{kT}{2}. Hence energy of N linear molecules is
E=(3n-5)\frac{NkT}{2}
C_v=\frac{\partial E}{\partial T}=(3n-5)\frac{Nk}{2}
Hence, answer is (B)
E_n=(n+\frac{1}{2})\hbar\omega
\begin{align*}
z&=\sum\limits_{n=0}^{\infty}e^{-\beta E_n}\\
&=\sum\limits_{n=0}^{\infty}e^{-\beta (n+\frac{1}{2})\hbar\omega}\\
&=e^{ \frac{-\beta\hbar\omega}{2}}\sum\limits_{n=0}^{\infty}e^{-\beta n\hbar\omega}\\
z&=e^{ \frac{-\beta\hbar\omega}{2}}\left(1+e^{-\beta \hbar\omega}+e^{-2\beta \hbar\omega}+\cdots\right)\\
\end{align*}
This is a geometric series where each term is obtained from previous term by multiplying e^{-\beta \hbar\omega}. Hence,
\left(1+e^{-\beta \hbar\omega}+e^{-2\beta \hbar\omega}+..\right)\!\!=\!\!\frac{1}{1-e^{-\beta\hbar\omega}}
z=\frac{e^{-\beta\hbar\omega/2}}{1-e^{-\beta\hbar\omega}}
Hence, answer is (D)
\Delta t=30 ms=30\times10^{-3}s, P_{avg}=0.6 \text{watt per pulse}, \lambda=640 nm=640\times10^{-9}m
Energy per pulse is power times pulse duration.
\begin{align*}
E_{pulse}&=P_{avg}\Delta t\\
&=0.6\times30\times10^{-3}\\
&=0.018 joule
\end{align*}
Energy per photon is given by Planck formula.
\begin{align*}
E_{photon}&=h\nu=\frac{hc}{\lambda}\\
&=\frac{6.63\times10^{-34}\times3\times10^8}{640\times10^{-9}}\\
&=0.031078125\times10^{-17} joule
\end{align*}
Number of photons per pulse is just energy per pulse divided by energy per photon
\begin{align*}
N&=\frac{E_{pulse}}{E_{photon}}\\
&=\frac{0.018}{0.031078125\times10^{-17}}\\
&=5.8\times10^{16}
\end{align*}
Hence, answer is (C)
m^*=\frac{\hbar^2}{\frac{\partial^2\epsilon_k}{\partial k^2}}
At first Brillouin zone boundary (k_x,k_y,k_z)=\left(\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}\right). Let us consider only first term in energy i.e.
\epsilon_{k_x} = \beta( \cos{k_xa})
\frac{\partial\epsilon_{k_x}}{\partial k}=\beta\left( -a\sin{k_xa}\frac{\partial k_x}{\partial k}\right)
Using k=\sqrt{k_x^2+k_y^2+k_z^2}
\frac{\partial k_x}{\partial k}=\frac{ k}{ k_x}
\frac{\partial\epsilon_{k_x}}{\partial k}=\beta\left( -a\frac{ k}{ k_x}\sin{k_xa}\right)
\begin{align*}
\frac{\partial^2\epsilon_{k_x}}{\partial k^2}&=\beta\left( -a\frac{ 1}{ k_x}\sin{k_xa}\right.\\
&~~~-ak\sin{k_xa}\frac{ \partial}{\partial k} \frac{1}{k_x}\\
&\left.~~~-a^2\frac{ k^2}{ k_x^2}\cos{k_xa}\right)
\end{align*}
\begin{align*}
\frac{\partial^2\epsilon_{k_x}}{\partial k^2}\left|_{k_x,k_y,k_z=\frac{\pi}{a}}\right.&=\beta\left( a^2\frac{ k^2}{ k_x^2}\right)\\
&=\beta a^2\left( \frac{ 3\frac{ \pi^2}{ a^2}}{ \frac{ \pi^2}{ a^2}}\right)\\
&=3\beta a^2
\end{align*}
Similarly,
\frac{\partial^2\epsilon_{k_y}}{\partial k^2}=3\beta a^2
\frac{\partial^2\epsilon_{k_z}}{\partial k^2}=3\beta a^2
m^*=\frac{\hbar^2}{3\beta a^2}
Hence, answer is (D)
No comments :
Post a Comment