Physics Resonance: Problem set 61 -->

Notice

Wednesday, 25 January 2017

Problem set 61

  1. The product of the uncertainties $\left(\Delta L_x\right)\left(\Delta L_y\right)$ for a particle in the state $a|1,1 > +b|1,-1 > $ (where $|l,m > $ denotes an eigenstate of $L^2$ and $L_z$) will be a minimum for
    1. $a=\pm ib$
    2. $a=0$ and $b=1$
    3. $a=\frac{\sqrt{3}}{2}$ and $b=\frac{1}{2}$
    4. $a=\pm b$
  2. Of the nuclei of mass number $A=125$, the binding energy calculated from the liquid drop model (given that the coefficients for the Coulomb and the asymmetry energy are $a_c=0.7$ MeV and $a_{sym}=22.5$ MeV respectively) is a maximum for
    1. $^{125}_{54}$Xe
    2. $^{125}_{53}$I
    3. $^{125}_{52}$Te
    4. $^{125}_{51}$Sb
  3. The value of $\oint\limits_C\frac{e^{2z}}{(z+1)^4}dz$, where $C$ is circle defined by $|z|=3$, is
    1. $\frac{8\pi i}{3}e^{-2}$
    2. $\frac{8\pi i}{3}e^{-1}$
    3. $\frac{8\pi i}{3}e$
    4. $\frac{8\pi i}{3}e^{2}$
  4. Consider the following processes involving free particles
    1. $\bar n\rightarrow \bar p+e^++\bar \nu_e$
    2. $\bar p+n\rightarrow \pi^-$
    3. $ p+n\rightarrow \pi^++\pi^0+\pi^0$
    4. $p+\bar \nu_e\rightarrow n+e^+$
    Which of the following statements is true?
    1. Process (i) obeys all conservation laws
    2. Process (ii) conserves baryon number, but violates energy-momentum conservation
    3. Process (iii) is not allowed by strong interactions, but is allowed by weak interactions
    4. Process (iv) conserves baryon number, but violates lepton number conservation
  5. A one-dimensional harmonic oscillator is in the state $\psi(x)=\frac{1}{\sqrt{14}}\left[3\psi_0(x)-2\psi_1(x)-\psi_2(x)\right]$, where $\psi_0(x)$, $\psi_1(x)$ and $\psi_2(x)$ are the ground, first and second excited states respectively. The probability of finding the oscillator in the ground state is
    1. 0
    2. $\frac{3}{\sqrt{14}}$
    3. $\frac{9}{14}$
    4. 1

No comments :

Post a Comment