- Three variables a, b, c are each randomly chosen from uniform distribution in the interval [0,1]. The probability that a+b>2c is
- \frac{3}{4}
- \frac{2}{3}
- \frac{1}{2}
- \frac{1}{4}
- Which one of the following sets of Maxwell's equations for time independent charge density \rho and current density \vec J is correct?
- \begin{align*}
\vec\nabla\cdot\vec E&=\rho/\epsilon_0\\
\vec\nabla\cdot\vec B&=0\\
\vec\nabla\times\vec E&=-\frac{\partial\vec B}{\partial t}\\
\vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t}
\end{align*}
- \begin{align*}
\vec\nabla\cdot\vec E&=\rho/\epsilon_0\\
\vec\nabla\cdot\vec B&=0\\
\vec\nabla\times\vec E&=0\\
\vec\nabla\times\vec B&=\mu_0\vec J
\end{align*}
- \begin{align*}
\vec\nabla\cdot\vec E&=0\\
\vec\nabla\cdot\vec B&=0\\
\vec\nabla\times\vec E&=0\\
\vec\nabla\times\vec B&=\mu_0\vec J
\end{align*}
- \begin{align*}
\vec\nabla\cdot\vec E&=\rho/\epsilon_0\\
\vec\nabla\cdot\vec B&=\mu_0|\vec J |\\
\vec\nabla\times\vec E&=0\\
\vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t}
\end{align*}
- A system of N non-interacting classical particles, each of mass m is in a two-dimensional harmonic potential of the form V(r)=\alpha(x^2+y^2) where \alpha is a positive constant. The canonical partition function of the system at temperature T \left(\beta=\frac{1}{k_BT}\right):
- \left[\left(\frac{\alpha}{2m}\right)^2\frac{\pi}{\beta}\right]^N
- \left(\frac{2m\pi}{\alpha\beta}\right)^{2N}
- \left(\frac{\alpha\pi}{2m\beta}\right)^N
- \left(\frac{2m\pi^2}{\alpha\beta^2}\right)^{N}
- In a two-state system, the transition rate of a particle from state 1 to state 2 is t_{12}, and the transition rate of a particle from state 2 to state 1 is t_{21}. In the steady state, the probability of finding the particle in state 1 is
- \frac{t_{21}}{t_{12}+t_{21}}
- \frac{t_{12}}{t_{12}+t_{21}}
- \frac{t_{12}t_{21}}{t_{12}+t_{21}}
- \frac{t_{12}-t_{21}}{t_{12}+t_{21}}
- The viscosity \eta of a liquid is given by Poiseuille's formula \eta=\frac{\pi Pa^4}{8lV}. Assume that l and V can be measured very accurately, but the pressure P has an rms error of 1% and the radius a has an independent rms error of 3%. The rms error of viscosity is closest to
- 2%
- 4%
- 12%
- 13%
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Tuesday, 17 January 2017
Problem set 57
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment