- Three variables $a$, $b$, $c$ are each randomly chosen from uniform distribution in the interval $[0,1]$. The probability that $a+b>2c$ is
- $\frac{3}{4}$
- $\frac{2}{3}$
- $\frac{1}{2}$
- $\frac{1}{4}$
- Which one of the following sets of Maxwell's equations for time independent charge density $\rho$ and current density $\vec J$ is correct?
- \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=-\frac{\partial\vec B}{\partial t}\\ \vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t} \end{align*}
- \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\vec J \end{align*}
- \begin{align*} \vec\nabla\cdot\vec E&=0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\vec J \end{align*}
- \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=\mu_0|\vec J |\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t} \end{align*}
- A system of $N$ non-interacting classical particles, each of mass $m$ is in a two-dimensional harmonic potential of the form $V(r)=\alpha(x^2+y^2)$ where $\alpha$ is a positive constant. The canonical partition function of the system at temperature $T$ $\left(\beta=\frac{1}{k_BT}\right)$:
- $\left[\left(\frac{\alpha}{2m}\right)^2\frac{\pi}{\beta}\right]^N$
- $\left(\frac{2m\pi}{\alpha\beta}\right)^{2N}$
- $\left(\frac{\alpha\pi}{2m\beta}\right)^N$
- $\left(\frac{2m\pi^2}{\alpha\beta^2}\right)^{N}$
- In a two-state system, the transition rate of a particle from state 1 to state 2 is $t_{12}$, and the transition rate of a particle from state 2 to state 1 is $t_{21}$. In the steady state, the probability of finding the particle in state 1 is
- $\frac{t_{21}}{t_{12}+t_{21}}$
- $\frac{t_{12}}{t_{12}+t_{21}}$
- $\frac{t_{12}t_{21}}{t_{12}+t_{21}}$
- $\frac{t_{12}-t_{21}}{t_{12}+t_{21}}$
- The viscosity $\eta$ of a liquid is given by Poiseuille's formula $\eta=\frac{\pi Pa^4}{8lV}$. Assume that $l$ and $V$ can be measured very accurately, but the pressure $P$ has an rms error of 1% and the radius $a$ has an independent rms error of 3%. The rms error of viscosity is closest to
- 2%
- 4%
- 12%
- 13%
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Tuesday, 17 January 2017
Problem set 57
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment