Processing math: 100%
Physics Resonance: Problem set 57 -->

Notice

Tuesday, 17 January 2017

Problem set 57

  1. Three variables a, b, c are each randomly chosen from uniform distribution in the interval [0,1]. The probability that a+b>2c is
    1. \frac{3}{4}
    2. \frac{2}{3}
    3. \frac{1}{2}
    4. \frac{1}{4}
  2. Which one of the following sets of Maxwell's equations for time independent charge density \rho and current density \vec J is correct?
    1. \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=-\frac{\partial\vec B}{\partial t}\\ \vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t} \end{align*}
    2. \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\vec J \end{align*}
    3. \begin{align*} \vec\nabla\cdot\vec E&=0\\ \vec\nabla\cdot\vec B&=0\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\vec J \end{align*}
    4. \begin{align*} \vec\nabla\cdot\vec E&=\rho/\epsilon_0\\ \vec\nabla\cdot\vec B&=\mu_0|\vec J |\\ \vec\nabla\times\vec E&=0\\ \vec\nabla\times\vec B&=\mu_0\epsilon_0\frac{\partial\vec E}{\partial t} \end{align*}
  3. A system of N non-interacting classical particles, each of mass m is in a two-dimensional harmonic potential of the form V(r)=\alpha(x^2+y^2) where \alpha is a positive constant. The canonical partition function of the system at temperature T \left(\beta=\frac{1}{k_BT}\right):
    1. \left[\left(\frac{\alpha}{2m}\right)^2\frac{\pi}{\beta}\right]^N
    2. \left(\frac{2m\pi}{\alpha\beta}\right)^{2N}
    3. \left(\frac{\alpha\pi}{2m\beta}\right)^N
    4. \left(\frac{2m\pi^2}{\alpha\beta^2}\right)^{N}
  4. In a two-state system, the transition rate of a particle from state 1 to state 2 is t_{12}, and the transition rate of a particle from state 2 to state 1 is t_{21}. In the steady state, the probability of finding the particle in state 1 is
    1. \frac{t_{21}}{t_{12}+t_{21}}
    2. \frac{t_{12}}{t_{12}+t_{21}}
    3. \frac{t_{12}t_{21}}{t_{12}+t_{21}}
    4. \frac{t_{12}-t_{21}}{t_{12}+t_{21}}
  5. The viscosity \eta of a liquid is given by Poiseuille's formula \eta=\frac{\pi Pa^4}{8lV}. Assume that l and V can be measured very accurately, but the pressure P has an rms error of 1% and the radius a has an independent rms error of 3%. The rms error of viscosity is closest to
    1. 2%
    2. 4%
    3. 12%
    4. 13%

No comments :

Post a Comment