Processing math: 100%
Physics Resonance: Problem set 58 -->

Notice

Thursday, 19 January 2017

Problem set 58

  1. For an electron moving through a one- dimensional periodic lattice of periodicity a, which of the following corresponds to an energy eigenfunction consistent with Bloch’s theorem?
    1. \psi(x)=A\exp{\left( i\left[\frac{\pi x}{a}+\cos{\left(\frac{\pi x}{2a}\right)}\right]\right)}
    2. {\scriptstyle\psi(x)=A\exp{\left( i\left[\frac{\pi x}{a}+\cos{\left(\frac{2\pi x}{a}\right)}\right]\right)}}
    3. {\scriptstyle \psi(x)=A\exp{\left( i\left[\frac{2\pi x}{a}+i\cosh{\left(\frac{2\pi x}{a}\right)}\right]\right)}}
    4. \psi(x)=A\exp{\left( i\left[\frac{\pi x}{2a}+i\left|\frac{\pi x}{2a}\right|\right]\right)}
  2. A thin metal film of dimension 2\:mm\times2\:mm contains 4\times10^{12} electrons. The magnitude of the Fermi wavevector of the system, in the free electron approximation, is
    1. 2\sqrt{\pi}\times10^{7}\:cm^{-1}
    2. \sqrt{2\pi}\times10^{7}\:cm^{-1}
    3. \sqrt{\pi}\times10^{7}\:cm^{-1}
    4. 2\pi\times10^{7}\:cm^{-1}
  3. A positron is suddenly absorbed by the nucleus of a tritium (^3_1H) atom to turn the latter into a He^+ ion. If the electron in the tritium atom was initially in the ground state, the probability that the resulting He^+ ion will be in its ground state is
    1. 1
    2. \frac{8}{9}
    3. \frac{128}{243}
    4. \frac{512}{729}
  4. The first order diffraction peak of a crystalline solid occurs at a scattering angle of 30^0 when the diffraction pattern is recorded using an x-ray beam of wavelength 0.15 nm. If the error in measurements of the wavelength and the angle are 0.01 nm and 1^0 respectively, then the error in calculating the inter- planar spacing will approximately be
    1. 1.1\times 10^{-2}\:nm
    2. 1.3\times 10^{-4}\:nm
    3. 2.5\times 10^{-2}\:nm
    4. 2.0\times 10^{-3}\:nm
  5. The dispersion relation of electrons in a 3-dimensional lattice in the tight binding approximation is given by, \epsilon_k=\alpha\cos{k_xa}+\beta\cos{k_ya}+\gamma\cos{k_za} where a is the lattice constant and \alpha,\beta,\gamma are constants with dimension of energy. The effective mass tensor at the corner of the first Brillouin zone \left(\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}\right) is
    1. \frac{\hbar^2}{a^2}\begin{pmatrix}-\frac{1}{\alpha}&0&0\\0&-\frac{1}{\beta}&0\\0&0&\frac{1}{\gamma}\end{pmatrix}
    2. \frac{\hbar^2}{a^2}\begin{pmatrix}-\frac{1}{\alpha}&0&0\\0&-\frac{1}{\beta}&0\\0&0&-\frac{1}{\gamma}\end{pmatrix}
    3. \frac{\hbar^2}{a^2}\begin{pmatrix}\frac{1}{\alpha}&0&0\\0&\frac{1}{\beta}&0\\0&0&\frac{1}{\gamma}\end{pmatrix}
    4. \frac{\hbar^2}{a^2}\begin{pmatrix}\frac{1}{\alpha}&0&0\\0&\frac{1}{\beta}&0\\0&0&-\frac{1}{\gamma}\end{pmatrix}

No comments :

Post a Comment