Physics Resonance: Problem set 58 -->

Notice

Thursday, 19 January 2017

Problem set 58

  1. For an electron moving through a one- dimensional periodic lattice of periodicity a, which of the following corresponds to an energy eigenfunction consistent with Bloch’s theorem?
    1. $\psi(x)=A\exp{\left( i\left[\frac{\pi x}{a}+\cos{\left(\frac{\pi x}{2a}\right)}\right]\right)}$
    2. ${\scriptstyle\psi(x)=A\exp{\left( i\left[\frac{\pi x}{a}+\cos{\left(\frac{2\pi x}{a}\right)}\right]\right)}}$
    3. ${\scriptstyle \psi(x)=A\exp{\left( i\left[\frac{2\pi x}{a}+i\cosh{\left(\frac{2\pi x}{a}\right)}\right]\right)}}$
    4. $\psi(x)=A\exp{\left( i\left[\frac{\pi x}{2a}+i\left|\frac{\pi x}{2a}\right|\right]\right)}$
  2. A thin metal film of dimension $2\:mm\times2\:mm$ contains $4\times10^{12}$ electrons. The magnitude of the Fermi wavevector of the system, in the free electron approximation, is
    1. $2\sqrt{\pi}\times10^{7}\:cm^{-1}$
    2. $\sqrt{2\pi}\times10^{7}\:cm^{-1}$
    3. $\sqrt{\pi}\times10^{7}\:cm^{-1}$
    4. $2\pi\times10^{7}\:cm^{-1}$
  3. A positron is suddenly absorbed by the nucleus of a tritium $(^3_1H)$ atom to turn the latter into a $He^+$ ion. If the electron in the tritium atom was initially in the ground state, the probability that the resulting $He^+$ ion will be in its ground state is
    1. 1
    2. $\frac{8}{9}$
    3. $\frac{128}{243}$
    4. $\frac{512}{729}$
  4. The first order diffraction peak of a crystalline solid occurs at a scattering angle of $30^0$ when the diffraction pattern is recorded using an x-ray beam of wavelength 0.15 nm. If the error in measurements of the wavelength and the angle are 0.01 nm and $1^0$ respectively, then the error in calculating the inter- planar spacing will approximately be
    1. $1.1\times 10^{-2}\:nm$
    2. $1.3\times 10^{-4}\:nm$
    3. $2.5\times 10^{-2}\:nm$
    4. $2.0\times 10^{-3}\:nm$
  5. The dispersion relation of electrons in a 3-dimensional lattice in the tight binding approximation is given by, $$\epsilon_k=\alpha\cos{k_xa}+\beta\cos{k_ya}+\gamma\cos{k_za}$$ where $a$ is the lattice constant and $\alpha,\beta,\gamma$ are constants with dimension of energy. The effective mass tensor at the corner of the first Brillouin zone $\left(\frac{\pi}{a},\frac{\pi}{a},\frac{\pi}{a}\right)$ is
    1. $\frac{\hbar^2}{a^2}\begin{pmatrix}-\frac{1}{\alpha}&0&0\\0&-\frac{1}{\beta}&0\\0&0&\frac{1}{\gamma}\end{pmatrix}$
    2. $\frac{\hbar^2}{a^2}\begin{pmatrix}-\frac{1}{\alpha}&0&0\\0&-\frac{1}{\beta}&0\\0&0&-\frac{1}{\gamma}\end{pmatrix}$
    3. $\frac{\hbar^2}{a^2}\begin{pmatrix}\frac{1}{\alpha}&0&0\\0&\frac{1}{\beta}&0\\0&0&\frac{1}{\gamma}\end{pmatrix}$
    4. $\frac{\hbar^2}{a^2}\begin{pmatrix}\frac{1}{\alpha}&0&0\\0&\frac{1}{\beta}&0\\0&0&-\frac{1}{\gamma}\end{pmatrix}$

No comments :

Post a Comment