Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Monday, 23 January 2017
Problem set 60
A beam of unpolarized light in a medium with dielectric constant \epsilon_1 is reflected from a plane interface formed with another medium of dielectric constant \epsilon_2=3\epsilon_1. The two media have identical magnetic permeability. If the angle of incidence is 60^0, then the reflected light
is plane polarized perpendicular to the plane of incidence
is plane polarized parallel to the plane of incidence
is circularly polarized
has the same polarization as the incident light
This is a simple method (discovered by malus in 1808) of obtaining partially plane polarized light by reflection. The percentage of polarized light is greatest in reflected beam when light beam is incident on the transparent medium with an incident angle equal to the angle of polarization. The vibrations of this plane polarized reflected light are found to be perpendicular to the plane of incidence and therefore, the reflected light is said to be plane polarized in the plane of incidence, when the incident angle is equal to the Brewster angle \theta_B, where \tan\theta_B = n_2/n_1.
\begin{align*}
\tan\theta_B&=\frac{n_2}{n_1}\\
&=\sqrt{\frac{\epsilon_2}{\epsilon_1}}\\
\tan\theta_B&=\sqrt{3}
\end{align*}
Hence, \theta_B=60^0. As angle of incidence is equal to Brewster angle, reflected light is plane polarized perpendicular to the plane of incidence.
Hence, answer is (A)
The partition function of a system of N Ising spins is Z=\lambda_1^N+\lambda_2^N, where \lambda_1 and \lambda_2 are functions of temperature, but are independent of N. If \lambda_1 > \lambda_2, the free energy per spin in the limit N\rightarrow\infty is
\begin{align*}
F&=-kT\ln{Z}\\
&=-kT\ln{\left(\lambda_1^N+\lambda_2^N\right)}\\
F&=-kT\ln{\left(\lambda_1^N\left[1+\left(\frac{\lambda_2}{\lambda_1}\right)^N\right]\right)}\\
\end{align*}
For \lambda_1 > \lambda_2, \frac{\lambda_2}{\lambda_1} < 1, in the limit N\rightarrow\infty, \frac{\lambda_2}{\lambda_1} = 0F=-kT\ln{\left(\lambda_1^N\right)}=-NkT\ln{\lambda_1^N}\frac{F}{N}=-kT\ln{\lambda_1}
Hence, answer is (D)
The Hamiltonian of a system of N non-interacting spin-1/2 particles is H=-\mu_0B\sum_iS_i^z, where S_i^z=\pm1 are the components of i^{th} spin along an external magnetic field B. At a temperature T such that e^{\mu_0B/k_BT}=2, the specific heat per particle is
\frac{16}{25}k_B
\frac{8}{25}k_B\ln2
k_B\left(\ln2\right)^2
\frac{16}{25}k_B\left(\ln2\right)^2
Because each spin is independent of the others and distinguishable, we can find the partition function for one spin, Z_1, and use the relation Z_N=Z_1^N to obtain, the partition function for N spins.
\begin{align*}
Z_1&=\sum\limits_{s=\pm1}e^{-\beta\mu_0 Bs}\\
&=e^{-\beta\mu_0 B}+e^{\beta\mu_0 B}\\
&=2\cosh{\beta\mu_0 B}
\end{align*}Z_N=\left(2\cosh{\beta\mu_0 B}\right)^N
Mean energy
\begin{align*}
E&=-\frac{\partial\ln{Z_N}}{\partial\beta}\\
&=-N\mu B\tanh{\beta\mu_0 B}
\end{align*}\begin{align*}
C_V&=\frac{\partial E}{\partial T}\\
&=\left(\frac{\mu_0 B}{k T}\right)^2Nk\:sech^2{\beta\mu_0 B}
\end{align*}\frac{C_v}{N}=\left(\frac{\mu_0 B}{k T}\right)^2k\frac{4}{\left(e^{\frac{\mu_0 B}{kT}}+e^{-\frac{\mu_0 B}{kT}}\right)^2}
Since, e^{\mu_0B/k_BT}=2\frac{C_v}{N}=\left(\frac{\mu_0 B}{k T}\right)^2k\frac{4}{\left(2+\frac{1}{2}\right)^2}\frac{C_v}{N}=\left(\frac{\mu_0 B}{k T}\right)^2k\frac{16}{25}\frac{C_v}{N}=\left(\ln2\right)^2k\frac{16}{25}
Hence, answer is (D)
The ground state energy of a particle in the potential V(x)=g|x|, estimated using the trial wavefunction
\psi(x)=
\begin{cases}
\sqrt{\frac{c}{a^5}}(a^2-x^2),\quad x < |a|\\
0,\quad x\ge|a|
\end{cases}
First normalize the wavefunction using normalization condition \int\limits_{-a}^{a}\psi^*\psi\:dx=1\frac{c}{a^5}\int\limits_{-a}^{a}(a^2-x^2)^2\:dx=1\Rightarrow c=\frac{15}{16}\psi(x)=\sqrt{\frac{15}{16a^5}}(a^2-x^2)H=-\frac{\hbar^2}{2m}\frac{d^2}{d x^2}+g|x|=T+V\begin{align*}
< E >& = < \psi |H| \psi > \\
&= < \psi |T| \psi>+ < \psi |V| \psi>
\end{align*}\begin{align*}
< \psi |T| \psi> &={\scriptstyle-\frac{\hbar^2}{2m}\frac{15}{16a^5}\int\limits_{-a}^{a}(a^2-x^2) \frac{d^2(a^2-x^2)}{d x^2}dx}\\
&=\frac{\hbar^2}{m}\frac{15}{16a^5}\int\limits_{-a}^{a}(a^2-x^2)dx\\
&=\frac{5\hbar^2}{4ma^2}
\end{align*}\begin{align*}
< \psi |V| \psi>\! &=\frac{15}{16a^5}g\!\!\int\limits_{-a}^{a}\!(a^2-x^2)^2 |x|dx\\
&=\frac{15}{16a^5}2g\!\!\int\limits_{0}^{a}\!(a^2-x^2)^2 x dx\\
&=\frac{5}{16}ga
\end{align*} < E > =\frac{5\hbar^2}{4ma^2}+\frac{5}{16}ga\frac{d < E > }{da}=0\Rightarrow a=2\left(\frac{\hbar^2}{mg}\right)^{1/3} < E > =\frac{15}{16}\left(\frac{\hbar^2g^2}{m}\right)^{1/3}
Hence, answer is (A)
A hydrogen atom is subjected to the perturbation V_{pert}(\vec r)=\epsilon\cos{\left(2r/a_0\right)},
where a_0 is the Bohr radius. The change in the ground state energy to first order in \epsilon is
\epsilon/4
\epsilon/2
-\epsilon/2
-\epsilon/4
First order correction is given by
E_0^{(1)}=\left < \psi_{100}\left|H'\right|\psi_{100}\right >\psi_{100}=\frac{1}{\sqrt{\pi a_0^3}}e^{-r/a_0}\begin{align*}
E_0^{(1)}&=\frac{\epsilon}{\pi a_0^3}\!\int\limits_0^\infty\! e^{-\frac{2r}{a_0}}\!\cos{\left(\frac{2r}{a_0}\right)}4\pi r^2 dr\\
&={\textstyle\frac{4\epsilon}{a_0^3}\int\limits_0^\infty\! e^{-\frac{2r}{a_0}}\left(\frac{e^{i\frac{2r}{a_0}}+e^{-i\frac{2r}{a_0}} }{2}\right) r^2 dr}\\
&=\frac{2\epsilon}{a_0^3}\int\limits_0^\infty\! e^{-\frac{2r}{a_0}(1-i)}r^2dr\\
&+\frac{2\epsilon}{a_0^3}\int\limits_0^\infty\! e^{-\frac{2r}{a_0}(1+i)}r^2dr\\
&={\textstyle\frac{2\epsilon}{a_0^3}\left[\frac{2!}{\left(\frac{2}{a_0}(1-i)\right)^3}+\frac{2!}{\left(\frac{2}{a_0}(1+i)\right)^3}\right]}\\
&=\frac{\epsilon}{2}\left[\frac{1}{(1-i)^3}+\frac{1}{(1+i)^3}\right]\\
&={\textstyle\frac{\epsilon}{2}\left[\frac{1}{\left(\sqrt{2}\right)^3\left(\frac{1-i}{\sqrt{2}}\right)^3}+\frac{1}{\left(\sqrt{2}\right)^3\left(\frac{1+i}{\sqrt{2}}\right)^3}\right]}\\
&=\frac{\epsilon}{4\sqrt{2}}\left[\frac{1}{e^{\frac{-i3\pi}{4}}}+\frac{1}{e^{\frac{i3\pi}{4}}}\right]\\
&=\frac{\epsilon}{4\sqrt{2}}\left[e^{\frac{i3\pi}{4}}+e^{\frac{-i3\pi}{4}}\right]\\
&=\frac{\epsilon}{4\sqrt{2}}\left[2\cos{\left(\frac{3\pi}{4}\right)}\right]\\
&=\frac{\epsilon}{4\sqrt{2}}\left[2\left(-\frac{1}{\sqrt{2}}\right)\right]\\
&=-\frac{\epsilon}{4}
\end{align*}
No comments :
Post a Comment