Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Monday, 31 October 2016
Problem set 17
If the perturbation H' =ax, where a is a constant, is added to the infinite square well potential
\begin{align*}
V(x) &=
\begin{cases}
0 & \text{for } 0 \leq x \geq \pi \\
\infty & \text{otherwise}
\end{cases}
\end{align*}
The correction to the ground state energy,
to first order in a, is
\frac{a\pi}{2}
a\pi
\frac{a\pi}{4}
\frac{a\pi}{\sqrt{2}}
Ground state wave function is given by
\psi_0=\sqrt{\frac{2}{L}}\sin{\frac{n\pi x}{L}}=\sqrt{\frac{2}{\pi}}\sin{\frac{n\pi x}{\pi}}.
Since, L=\pi. First order correction to energy is
given by
\begin{align*}
E_0^{(1)}&=<\psi_0|H'|\psi_0>\\
&=\int_0^\pi\psi_0^*\:ax\:\psi_0\:dx\\
&={\scriptstyle \int_0^\pi\sqrt{\frac{2}{\pi}}\sin{\frac{n\pi x}{\pi}}\:ax\:\sqrt{\frac{2}{\pi}}\sin{nx}\:dx}\\
&=\frac{2a}{\pi}\int_0^\pi x\sin^2{nx}\:dx\\
&=\frac{2a}{\pi}\frac{1}{2}\int_0^\pi x(1-\cos{2nx})\:dx\\
&={\scriptstyle \frac{a}{\pi}\left\{\left[\frac{x^2}{2}\right]_0^\pi-\left[x\int \cos{2nx}\:dx\right.\right.}\\
&{\scriptstyle \left.\left.-\int\frac{dx}{dx}\left(\int\cos{2nx}\:dx\right)dx\right]_0^\pi\right\}}\\
&={\scriptstyle \frac{a}{\pi}\left\{\frac{\pi^2}{2}-\left[x\frac{sin{2nx}}{2n}+\frac{\cos{2nx}}{4n^2}\right]_0^\pi\right\}}\\
&=\frac{a}{2\pi}
\end{align*}
Which of the following is an analytic function of the complex variable z = x + iy in the domain | z |< 2?
(3+x-iy)^7
(1+x+iy)^4(7-x-iy)^3
(1-2x-iy)^4(3-x-iy)^3
(x+iy-1)^{1/2}
A function is analytic if it satisfies Cauchy–Riemann condition i.e. a function f(z) is analytic if \frac{\partial f(z)}{\partial\bar z}=0
Above functions can be written in terms of z using z=x+iy, \bar z=x-iy, x=\frac{z+\bar z}{2} and y=\frac{z-\bar z}{2i}\begin{align*}
&(3+x-iy)^7=(3+\bar z)^7\\
&(1+x+iy)^4(7-x-iy)^4\\
&=(1+z)^4(7-z)^3\\
&(1-2x-iy)^4(3-x-iy)^3\\
&=\left(1-2\frac{z+\bar z}{2}-i\frac{z-\bar z}{2i}\right)^4(3-z)^3\\
&=\left(1-2z-\frac{\bar z}{2}\right)^4(3-z)^3\\
&(x+iy-1)^{1/2}=(z-1)^{1/2}
\end{align*}
For the functions which contain \bar z, \frac{\partial f(z)}{\partial\bar z}\neq0. Hence, the functions in the options (A) and (C) are not analytical.
For the functions which are functions of only z have \frac{\partial f(z)}{\partial\bar z}=0. Hence, we have option either
(B) or (C).
The option (B) i.e. f(z)=(1+z)^4(7-z)^3 is a polynomial in z and polynomial in z is analytic everywhere.
For the option (C) i.e. f(z)=(z-1)^{1/2}, f'(z)=\frac{1}{2\sqrt{z-1}} and this function is analytic only for |z|<1. Our domain is |z|<2. Hence, it not analytical over the domain |z|<2.
Hence, the correct option is (B).
A particle in one dimension moves under the influence of a potential V(x) = a x^6, where a is a real constant. For large n the quantized energy level E_n depends on n as:
E_n\sim n^3
E_n\sim n^{4/3}
E_n\sim n^{6/5}
E_n\sim n^{3/2}
For large value of n, the semiclassical approximation is valid and for bound states we may use the Bohr-Sommerfeld quantization condition:
n\hbar=\oint p\:dq
The total energy of system is E=\frac{p^2}{2m}+ax^6, hence
p=\sqrt{2m(E-ax^6)}\oint p\:dq=\int_{x_a}^{x_b}\sqrt{2m(E-ax^6)}dx
Where x_a and x_b are classical turning points. Turning point is the point at which E=V(x), hence we get,
E=ax^6
Above equation is true for x=\pm\left(\frac{E}{a}\right)^{1/6}\oint p\:dq=\int_{-\left(\frac{E}{a}\right)^{1/6}}^{\left(\frac{E}{a}\right)^{1/6}}\sqrt{2m(E-ax^6)}dx
Let us scale the integration with substitution x=\left(\frac{E}{a}\right)^{1/6}\begin{align*}
&\oint p\:dq\\
&=\sqrt{2m}\left(\frac{E}{a}\right)^{2/3}\int_{-1}^1\sqrt{1-y^6)}dy\\
&=n\hbar
\end{align*}
Hence, E_n\sim n^{3/2}
A resistance is measured by passing a current through it and measuring the resulting voltage drop. If the voltmeter and
the ammeter have uncertainties of 3% and 4%, respectively, then
The uncertainty in the value of the resistance is
7.0%
3.5%
5.0%
12.0%
The uncertainty in the computed value of the power dissipated in the resistance is
7%
5%
11%
9%
If \Delta x and \Delta y are uncertainties in measurements of x and y, then uncertainty in z i.e. \Delta z, for different cases
is given by
\begin{eqnarray}
\begin{array}{cc}
{\scriptstyle z=x\pm y }&{\scriptstyle\Delta z=\sqrt{(\Delta x)^2+(\Delta y)^2}}\\
{\scriptstyle z=xy} &{\scriptstyle\Delta z=|xy|\sqrt{\left(\frac{\Delta x}{x}\right)^2+\left(\frac{\Delta y}{y}\right)^2}}\\
{\scriptstyle z=\frac{x}{y}} &{\scriptstyle\Delta z=\left|\frac{x}{y}\right|\sqrt{\left(\frac{\Delta x}{x}\right)^2+\left(\frac{\Delta y}{y}\right)^2}}\\
{\scriptstyle z=x^n} &{\scriptstyle\Delta z=\left|n\right|x^{n-1}\Delta x}\\
{\scriptstyle z=f(x,y)} &{\scriptstyle \Delta z=\sqrt{\left(\frac{\partial f}{\partial x}\right)^2(\Delta x)^2+\left(\frac{\partial f}{\partial y}\right)^2(\Delta y)^2}}\\
\end{array}
\end{eqnarray}
In our case \Delta V=3\% and \Delta I=4\%, as R=\frac{V}{I}\begin{align*}
\Delta R&=\left|\frac{V}{I}\right|\sqrt{\left(\frac{\Delta V}{V}\right)^2+\left(\frac{\Delta I}{I}\right)^2}\\
&=\left|\frac{100}{100}\right|\sqrt{\left(\frac{3}{100}\right)^2+\left(\frac{4}{100}\right)^2}\\
&=\frac{5}{100}\\
\Delta R&=5\%
\end{align*}
Similarly, using P=VI, \Delta P=5\%. Hence, anwers are (C) and (B).
No comments :
Post a Comment