Physics Resonance: Problem set 10 -->

Notice

Monday, 17 October 2016

Problem set 10

  1. The function $f(z)=u(x,y)+iv(x,y)$ is analytic at $z=x+iy$. The value of $\nabla^2u$ at this point is:
    1. 0
    2. undefined
    3. $\pi$
    4. $e^{-\pi^2}$
  2. A head of mass $m$ slides on a smooth rod which is rotating about one end in a vertical plane with uniform angular velocity $\omega$. The Lagrangian of the system is :
    1. $L=\frac{1}{2}m\left(\dot r^2+r^2\dot\theta^2\right)-mgr\sin\theta$
    2. $L=\frac{1}{2}m\left(r^2\dot\theta^2\right)-mgr\sin\theta$
    3. $L=\frac{1}{2}m\left(\dot r^2+\dot\theta^2\right)-mgr\sin\theta$
    4. $L=\frac{1}{2}m\left(r^2\dot\theta^2\right)+mgr\sin\theta$
  3. A partition function of two Bose particles each of which can occupy any of the two energy levels $0$ and $\epsilon$ is
    1. $1+e^{-2\epsilon/kT}+2e^{-\epsilon/kT}$
    2. $1+e^{-2\epsilon/kT}+e^{-\epsilon/kT}$
    3. $2+e^{-2\epsilon/kT}+e^{-\epsilon/kT}$
    4. $e^{-2\epsilon/kT}+e^{-\epsilon/kT}$
  4. A one dimensional random walker takes steps to left or right with equal probability. The probability that the random walker starting from origin is back to origin after $N$ even number of steps is
    1. $\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!}\left(\frac{1}{2}\right)^N$
    2. $\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!}$
    3. $2N!\left(\frac{1}{2}\right)^{2N}$
    4. $N!\left(\frac{1}{2}\right)^N$
  5. Five electrons (Fermions with spin $1/2\hbar$) are kept in a one-dimensional infinite potential well with width $a$. (Ground state energy of single electron well $=\frac{\hbar^2\pi^2}{2ma^2}$). The first absorption line corresponds to energy:
    1. $\frac{\hbar^2\pi^2}{2ma^2}$
    2. $\frac{5\hbar^2\pi^2}{2ma^2}$
    3. $\frac{7\hbar^2\pi^2}{2ma^2}$
    4. $\frac{11\hbar^2\pi^2}{2ma^2}$

No comments :

Post a Comment