Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Thursday, 27 October 2016
Problem set 15
For constant uniform electric and magnetic fields \vec E=\vec E_0 and \vec B=\vec B_0,it is possible to choose a gauge such that the scalar potential \phi and vector potential \vec A are given by
\phi=0 and \vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right)
\phi=-\vec E\cdot \vec r and \vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right)
\phi=-\vec E\cdot \vec r and \vec A=0
\phi=0 and \vec A=-\vec E t
Electric field \vec E and magnetic field \vec B are related to vector and scalar potentials by
\vec B=\vec\nabla\times\vec A\quad (1)\vec E=-\vec\nabla\phi-\frac{\partial\vec A}{\partial t}\quad (2)
Substituting values \phi=-\vec E\cdot \vec r and \vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right) in equations (1) and (2), we get \vec E=\vec E_0 and \vec B=\vec B_0 (Verify this). Hence answer is (B)\phi=-\vec E\cdot \vec r and \vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right).
Let \vec{a} and \vec{b} be two distinct three-dimensional vectors. Then the component of \vec{b} that is perpendicular to \vec{a} is given by
The wavefunction of a particle is given by \psi=\left(\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right), where \phi_0 and \phi_1 are the normalized eigenfunctions with energies E_0 and E_1 corresponding to the ground state and first excited state, respectively. The expectation value of the Hamiltonian in the state \psi is
\frac{E_0}{2}+E_1
\frac{E_0}{2}-E_1
\frac{E_0-2E_1}{3}
\frac{E_0+2E_1}{3}
H\phi_0=E_0\phi_0 and H\phi_1=E_1\phi_1\begin{align*}
\left< H \right>=\frac{\left< \psi |H|\psi \right>}{\left< \psi |\psi \right>}
\end{align*}\begin{align*}
&<\psi|H|\psi>=\\
&\left<\left.\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right|H\left|\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right.\right>
\end{align*}\begin{align*}
&<\psi|H|\psi>=\\
&\left<\left.\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right|\frac{1}{\sqrt{2}}E_0\phi_0+iE_1\phi_1 \right>
\end{align*}\begin{align*}
&<\psi|H|\psi>=\\
&\frac{1}{2}E_0\left<\left.\phi_0\right|\phi_0\right>+E_1(i)(-i) \left<\left.\phi_1\right|\phi_1 \right>
\end{align*}
Using orthonormality condition
<\psi|H|\psi>=\frac{1}{2}E_0+E_1\begin{align*}
<\psi|\psi>&=\\
&\left<\left.\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right|\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right>
\end{align*}\begin{align*}
<\psi|\psi>&=\\
&\frac{1}{2}\left<\left.\phi_0\right|\phi_0\right>+(-i)(i)\left<\left.\phi_1\right|\phi_1\right>
\end{align*}<\psi|\psi>=\frac{1}{2}+1=\frac{3}{2}\begin{align*}
\left< H \right> &=\frac{\frac{1}{2}E_0+E_1}{\frac{3}{2}}\\
&=\frac{E_0+2E_1}{3}
\end{align*}
Hence, answer is (D)
Which of the following matrices is an element of the group SU(2)
The special unitary group of degree n, denoted SU(n), is the Lie group of n×n unitary matrices with determinant 1.
For 2\times2 matrix the group is denoted by SU(2). Let U=\begin{pmatrix}a&b\\c&d\end{pmatrix}. As U is unitary, we have
UU^\dagger=U^\dagger U=1. This gives
aa^*+bb^*=1\quad(1)cc^*+dd^*=1\quad(2)ac^*+bd^*=0\quad(3)ca^*+db^*=0\quad(4)
Also det~U=ad-bc=1\quad(5)
From (4), we have
\frac{d}{c}=-\frac{a^*}{b^*}
substituting in (5)
-(aa^*+bb^*)\frac{c}{b^*}=1
Using (1) we get
c=-b^*
Similarly, we can show that
d=a^*
Hence, in general the 2\times2 matrix U=\begin{pmatrix}a&b\\c&d\end{pmatrix} is of SU(2) group if
Its determinant is 1 and
It is in the form U=\begin{pmatrix}a&b\\-b^*&a^*\end{pmatrix}
These conditions are satisfied by \begin{pmatrix}\frac{1+i}{\sqrt{3}}&\frac{-1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}&\frac{1-i}{\sqrt{3}}\end{pmatrix}. Hence answer is (B).
The acceleration due to gravity (g) on the surface of Earth is approximately 2.6 times that on the surface of Mars. Given that the radius of Mars is about one half the radius of Earth, the ratio of the escape velocity on Earth to that on Mars is approximately
1.1
1.3
2.3
5.2
Escape velocity is given by
v=\sqrt{\frac{2GM}{R}}
On earth's surface force acting on body is F=mg, hence g=\frac{F}{m}. However, F=\frac{GM_Em}{R_E^2}, hence g=\frac{\frac{GM_Em}{R_E^2}}{m}, hence GM=R_E^2gv_e=\sqrt{2R_Eg}\frac{v_E}{v_M}=\sqrt{\frac{2R_Eg_E}{2R_Mg_M}}=\sqrt{5.2}=2.3
Hence, answer is (C)
No comments :
Post a Comment