Physics Resonance: Problem set 15 -->

Notice

Thursday, 27 October 2016

Problem set 15

  1. For constant uniform electric and magnetic fields $\vec E=\vec E_0$ and $\vec B=\vec B_0$,it is possible to choose a gauge such that the scalar potential $\phi$ and vector potential $\vec A$ are given by
    1. $\phi=0$ and $\vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right)$
    2. $\phi=-\vec E\cdot \vec r$ and $\vec A=\frac{1}{2}\left(\vec B_0\times\vec r\right)$
    3. $\phi=-\vec E\cdot \vec r$ and $\vec A=0$
    4. $\phi=0$ and $\vec A=-\vec E t$
  2. Let $\vec{a}$ and $\vec{b}$ be two distinct three-dimensional vectors. Then the component of $\vec{b}$ that is perpendicular to $\vec{a}$ is given by
    1. $\frac{\vec{a}\times(\vec{b}\times\vec{a})}{a^2}$
    2. $\frac{\vec{b}\times(\vec{b}\times\vec{a})}{b^2}$
    3. $\frac{(\vec{a}.\vec{b})\vec{b}}{b^2}$
    4. $\frac{(\vec{b}.\vec{a})\vec{a}}{a^2}$
  3. The wavefunction of a particle is given by $\psi=\left(\frac{1}{\sqrt{2}}\phi_0+i\phi_1\right)$, where $\phi_0$ and $\phi_1$ are the normalized eigenfunctions with energies $E_0$ and $E_1$ corresponding to the ground state and first excited state, respectively. The expectation value of the Hamiltonian in the state $\psi$ is
    1. $\frac{E_0}{2}+E_1$
    2. $\frac{E_0}{2}-E_1$
    3. $\frac{E_0-2E_1}{3}$
    4. $\frac{E_0+2E_1}{3}$
  4. Which of the following matrices is an element of the group SU(2)
    1. $\begin{pmatrix}1&1\\0&1\end{pmatrix}$
    2. $\begin{pmatrix}\frac{1+i}{\sqrt{3}}&\frac{-1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}&\frac{1-i}{\sqrt{3}}\end{pmatrix}$
    3. $\begin{pmatrix}2+i&i\\3&1+i\end{pmatrix}$
    4. $\begin{pmatrix}\frac{1}{2}&\frac{\sqrt{3}}{2}\\\frac{\sqrt{3}}{2}&\frac{1}{2}\end{pmatrix}$
  5. The acceleration due to gravity $(g)$ on the surface of Earth is approximately 2.6 times that on the surface of Mars. Given that the radius of Mars is about one half the radius of Earth, the ratio of the escape velocity on Earth to that on Mars is approximately
    1. 1.1
    2. 1.3
    3. 2.3
    4. 5.2

No comments :

Post a Comment