- A plane wave of electric and magnetic fields $\vec E_0$ , $\vec B_0$ and frequency $\omega$ enters in a conducting bar of conductivity $\sigma$ along z-axis. Which of the following pairs of equations best represents the propagating wave? ($k\longrightarrow $ wave number)
- $\vec E(z,t)=E_0e^{-ikz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y$
- $\vec E(z,t)=E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y$
- $\vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y$
- $\vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)= E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y$
- A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index $n$. The incident $(E_i)$, reflected $(E_r)$ and transmitted $(E_t)$, electric fields are given as $E_i=E_{0i}exp[i(kz-\omega t)]$, $E_r=E_{0r}exp[i(k_rz-\omega t)]$, $E_t=E_{0t}exp[i(k_tz-\omega t)]$. If $E_{0i}=2 V/m$ and $n=1.5$ then the application of appropriate boundary conditions leads to
- $E_{0r}=-\frac{3}{5} V/m$, $E_{0t}=\frac{7}{5} V/m$
- $E_{0r}=-\frac{1}{5} V/m$, $E_{0t}=\frac{9}{5} V/m$
- $E_{0r}=-\frac{2}{5} V/m$, $E_{0t}=\frac{8}{5} V/m$
- $E_{0r}=\frac{4}{5} V/m$, $E_{0t}=\frac{6}{5} V/m$
- The magnetic field due to the $TE_{11}$ mode in a rectangular wave guide aligned along Z-axis is given by $H_z=H_1\cos{(0.5\:\pi x)}\cos{(0.6\:\pi y)}$, where $x$ and $y$ are in cm. Then dimensions of the rectangular wave guide $a$ and $b$, respectively, are
- 2.00 cm and 1.66 cm
- 1.66 cm and 2.66 cm
- 2.54 cm and 1.66 cm
- 1.66 cm and 1.25 cm
- The Boolean expression $B\cdot(A+B)+A\cdot(\bar B+A)$ can be realized using minimum number of
- 1 AND gate
- 2 AND gates
- 1 OR gate
- 2 OR gates
- For a diatomic molecule with the vibrational quantum number $n$ and rotational quantum number $J$, the vibrational level spacing $\Delta E_n=E_n-E_{n-1}$ and the rotational level spacing $\Delta E_J=E_J-E_{J-1}$ are approximately
- $\Delta E_n=$ constant, $\Delta E_J=$ constant
- $\Delta E_n=$ constant, $\Delta E_J\propto J$
- $\Delta E_n\propto n$, $\Delta E_J\propto J$
- $\Delta E_n\propto n$, $\Delta E_J\propto J^2$
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 21 October 2016
Problem set 12
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment