- A plane wave of electric and magnetic fields \vec E_0 , \vec B_0 and frequency \omega enters in a conducting bar of conductivity \sigma along z-axis. Which of the following pairs of equations best represents the propagating wave? (k\longrightarrow wave number)
- \vec E(z,t)=E_0e^{-ikz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y
- \vec E(z,t)=E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y
- \vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y
- \vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)= E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y
- A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index n. The incident (E_i), reflected (E_r) and transmitted (E_t), electric fields are given as E_i=E_{0i}exp[i(kz-\omega t)], E_r=E_{0r}exp[i(k_rz-\omega t)], E_t=E_{0t}exp[i(k_tz-\omega t)]. If E_{0i}=2 V/m and n=1.5 then the application of appropriate boundary conditions leads to
- E_{0r}=-\frac{3}{5} V/m, E_{0t}=\frac{7}{5} V/m
- E_{0r}=-\frac{1}{5} V/m, E_{0t}=\frac{9}{5} V/m
- E_{0r}=-\frac{2}{5} V/m, E_{0t}=\frac{8}{5} V/m
- E_{0r}=\frac{4}{5} V/m, E_{0t}=\frac{6}{5} V/m
- The magnetic field due to the TE_{11} mode in a rectangular wave guide aligned along Z-axis is given by H_z=H_1\cos{(0.5\:\pi x)}\cos{(0.6\:\pi y)}, where x and y are in cm. Then dimensions of the rectangular wave guide a and b, respectively, are
- 2.00 cm and 1.66 cm
- 1.66 cm and 2.66 cm
- 2.54 cm and 1.66 cm
- 1.66 cm and 1.25 cm
- The Boolean expression B\cdot(A+B)+A\cdot(\bar B+A) can be realized using minimum number of
- 1 AND gate
- 2 AND gates
- 1 OR gate
- 2 OR gates
- For a diatomic molecule with the vibrational quantum number n and rotational quantum number J, the vibrational level spacing \Delta E_n=E_n-E_{n-1} and the rotational level spacing \Delta E_J=E_J-E_{J-1} are approximately
- \Delta E_n= constant, \Delta E_J= constant
- \Delta E_n= constant, \Delta E_J\propto J
- \Delta E_n\propto n, \Delta E_J\propto J
- \Delta E_n\propto n, \Delta E_J\propto J^2
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 21 October 2016
Problem set 12
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment