Physics Resonance: Problem set 12 -->

Notice

Friday, 21 October 2016

Problem set 12

  1. A plane wave of electric and magnetic fields $\vec E_0$ , $\vec B_0$ and frequency $\omega$ enters in a conducting bar of conductivity $\sigma$ along z-axis. Which of the following pairs of equations best represents the propagating wave? ($k\longrightarrow $ wave number)
    1. $\vec E(z,t)=E_0e^{-ikz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y$
    2. $\vec E(z,t)=E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y$
    3. $\vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y$
    4. $\vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x$ and $\vec B(z,t)= E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y$
  2. A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index $n$. The incident $(E_i)$, reflected $(E_r)$ and transmitted $(E_t)$, electric fields are given as $E_i=E_{0i}exp[i(kz-\omega t)]$, $E_r=E_{0r}exp[i(k_rz-\omega t)]$, $E_t=E_{0t}exp[i(k_tz-\omega t)]$. If $E_{0i}=2 V/m$ and $n=1.5$ then the application of appropriate boundary conditions leads to
    1. $E_{0r}=-\frac{3}{5} V/m$, $E_{0t}=\frac{7}{5} V/m$
    2. $E_{0r}=-\frac{1}{5} V/m$, $E_{0t}=\frac{9}{5} V/m$
    3. $E_{0r}=-\frac{2}{5} V/m$, $E_{0t}=\frac{8}{5} V/m$
    4. $E_{0r}=\frac{4}{5} V/m$, $E_{0t}=\frac{6}{5} V/m$
  3. The magnetic field due to the $TE_{11}$ mode in a rectangular wave guide aligned along Z-axis is given by $H_z=H_1\cos{(0.5\:\pi x)}\cos{(0.6\:\pi y)}$, where $x$ and $y$ are in cm. Then dimensions of the rectangular wave guide $a$ and $b$, respectively, are
    1. 2.00 cm and 1.66 cm
    2. 1.66 cm and 2.66 cm
    3. 2.54 cm and 1.66 cm
    4. 1.66 cm and 1.25 cm
  4. The Boolean expression $B\cdot(A+B)+A\cdot(\bar B+A)$ can be realized using minimum number of
    1. 1 AND gate
    2. 2 AND gates
    3. 1 OR gate
    4. 2 OR gates
  5. For a diatomic molecule with the vibrational quantum number $n$ and rotational quantum number $J$, the vibrational level spacing $\Delta E_n=E_n-E_{n-1}$ and the rotational level spacing $\Delta E_J=E_J-E_{J-1}$ are approximately
    1. $\Delta E_n=$ constant, $\Delta E_J=$ constant
    2. $\Delta E_n=$ constant, $\Delta E_J\propto J$
    3. $\Delta E_n\propto n$, $\Delta E_J\propto J$
    4. $\Delta E_n\propto n$, $\Delta E_J\propto J^2$

No comments :

Post a Comment