Loading web-font TeX/Math/Italic
Physics Resonance: Problem set 12 -->

Notice

Friday, 21 October 2016

Problem set 12

  1. A plane wave of electric and magnetic fields \vec E_0 , \vec B_0 and frequency \omega enters in a conducting bar of conductivity \sigma along z-axis. Which of the following pairs of equations best represents the propagating wave? (k\longrightarrow wave number)
    1. \vec E(z,t)=E_0e^{-ikz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y
    2. \vec E(z,t)=E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y
    3. \vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)=\frac{k}{\omega} E_0e^{-ikz}e^{i(kz-\omega t+\phi)}\hat y
    4. \vec E(z,t)=\frac{k}{\omega}E_0e^{-kz}e^{i(kz-\omega t)}\hat x and \vec B(z,t)= E_0e^{-kz}e^{i(kz-\omega t+\phi)}\hat y
  2. A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index n. The incident (E_i), reflected (E_r) and transmitted (E_t), electric fields are given as E_i=E_{0i}exp[i(kz-\omega t)], E_r=E_{0r}exp[i(k_rz-\omega t)], E_t=E_{0t}exp[i(k_tz-\omega t)]. If E_{0i}=2 V/m and n=1.5 then the application of appropriate boundary conditions leads to
    1. E_{0r}=-\frac{3}{5} V/m, E_{0t}=\frac{7}{5} V/m
    2. E_{0r}=-\frac{1}{5} V/m, E_{0t}=\frac{9}{5} V/m
    3. E_{0r}=-\frac{2}{5} V/m, E_{0t}=\frac{8}{5} V/m
    4. E_{0r}=\frac{4}{5} V/m, E_{0t}=\frac{6}{5} V/m
  3. The magnetic field due to the TE_{11} mode in a rectangular wave guide aligned along Z-axis is given by H_z=H_1\cos{(0.5\:\pi x)}\cos{(0.6\:\pi y)}, where x and y are in cm. Then dimensions of the rectangular wave guide a and b, respectively, are
    1. 2.00 cm and 1.66 cm
    2. 1.66 cm and 2.66 cm
    3. 2.54 cm and 1.66 cm
    4. 1.66 cm and 1.25 cm
  4. The Boolean expression B\cdot(A+B)+A\cdot(\bar B+A) can be realized using minimum number of
    1. 1 AND gate
    2. 2 AND gates
    3. 1 OR gate
    4. 2 OR gates
  5. For a diatomic molecule with the vibrational quantum number n and rotational quantum number J, the vibrational level spacing \Delta E_n=E_n-E_{n-1} and the rotational level spacing \Delta E_J=E_J-E_{J-1} are approximately
    1. \Delta E_n= constant, \Delta E_J= constant
    2. \Delta E_n= constant, \Delta E_J\propto J
    3. \Delta E_n\propto n, \Delta E_J\propto J
    4. \Delta E_n\propto n, \Delta E_J\propto J^2

No comments :

Post a Comment