Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Sunday, 23 October 2016
Problem set 13
A rod of length $l_0$ makes an angle $\theta_0$ with the y-axis in its rest frame, while the rest frame moves to the right along the x-axis with relativistic speed $v$ with respect to lab frame. If $\gamma=\frac{1}{\sqrt{1-v^2/c^2}}$, the angle $\theta$ in the lab frame is
The x and y components of length $l_0$ are given by
$l_x=l_0\sin\theta_0$, $l_y=l_0\cos\theta_0$
As the frame is moving along x-axis to the right, there is contraction of length in $l_x$ only
$$l_x'=(l_0\sin\theta_0)\sqrt{1-v^2/c^2}$$
$$l_y'=l_0\cos\theta_0$$
\begin{align*}
\tan\theta&=\frac{l_y'}{l_x'}\\
&=\frac{l_0\cos\theta_0}{(l_0\sin\theta_0)\sqrt{1-v^2/c^2}}\\
&=\gamma\cot\theta_0
\end{align*}
$$\theta=\tan^{-1}(\gamma\cot\theta_0)$$
A particle of mass $m$ moves in a potential $V(x)=\frac{1}{2}m\omega^2x^2+\frac{1}{2}m\mu v^2$, where $x$ is the position coordinate, $v$ is the speed, and $\omega$ and $\mu$ are constants. The canonical (conjugate) momentum of the particle is
$p=m(1+\mu)v$
$p=mv$
$p=m\mu v$
$p=m(1-\mu)v$
\begin{align*}
L&=T-V(x)\\
&=\frac{1}{2}m\dot x^2-\frac{1}{2}m\omega^2x^2-\frac{1}{2}m\mu \dot v^2\\
&=\frac{1}{2}m\dot x^2-\frac{1}{2}m\omega^2x^2-\frac{1}{2}m\mu \dot x^2
\end{align*}
Conjugate momentum is given by
\begin{align*}
p&=\frac{\partial L}{\partial\dot x}\\
&=m\dot x-m\mu\dot x=m(1-\mu)v
\end{align*}
A solid sphere of radius $R$ carries a uniform volume charge density $\rho$. The magnitude of electric field inside the sphere at a distance $r$ from center is
$\frac{r\rho}{3\epsilon_0}$
$\frac{R\rho}{3\epsilon_0}$
$\frac{R^2\rho}{r\epsilon_0}$
$\frac{R^3\rho}{r^2\epsilon_0}$
According to Gauss law , if the surface encloses a charge $q$ within it, then net flux through the surface is $q/\epsilon_0$. The flux is given by
$$\phi_E=\int_S\vec E.d\vec A=\frac{q}{\epsilon_0}$$
If $\rho$ is the volume charge density, the charge enclosed within a distance $r$ is $q=\frac{4}{3}\pi r^3\rho$ and
$$\int_S\vec E.d\vec A=E(4\pi r^2)$$
$$E(4\pi r^2)=\frac{4}{3\epsilon_0}\pi r^3\rho$$
$$E=\frac{\rho r}{3\epsilon_0}$$
The electric field $\vec E(\vec r,t)$ for a circularly polarized electromagnetic wave propagating along the positive $z$ direction is
$E_0(\hat x+\hat y)exp[i(kz-\omega t)]$
$E_0(\hat x+i\hat y)exp[i(kz-\omega t)]$
$E_0(\hat x+i\hat y)exp[i(kz+\omega t)]$
$E_0(\hat x+\hat y)exp[i(kz+\omega t)]$
Plane wave travelling along the positive z-axis is given by $$\vec E(z,t)=\vec E_0 cos(kz-\omega t)$$
Plane wave travelling along the negative z-axis is given by $$\vec E(z,t)=\vec E_0 cos(kz+\omega t)$$
A beam linearly polarized along the x-axis and traveling in the positive z-direction can be
represented by:$$\vec E(z,t)= E_0 cos(kz-\omega t)\hat x$$
Circularly polarized light can be represented by the expressions:
\begin{align*}
\vec E_{RCP}(z,t)&= E_0 \left(cos(kz-\omega t)\hat x\right.\\
&{}\left.+sin(kz-\omega t)\hat y\right)
\end{align*}
\begin{align*}
\vec E_{LCP}(z,t)&= E_0 \left(cos(kz-\omega t)\hat x\right.\\
&\left.-sin(kz-\omega t)\hat y\right)
\end{align*}
Consider option (A)
\begin{align*}
\vec E&=E_0(\hat x+\hat y)exp[i(kz-\omega t)]\\
&=E_0(\hat x+\hat y)\left(cos(kz-\omega t)\right.\\
&{}\left.+isin(kz-\omega t)\right)\\
&=E_0\left[cos(kz-\omega t) \hat x\right.\\
&\left.{}+cos(kz-\omega t)\hat y\right]\\
&{}+iE_0\left[sin(kz-\omega t)\hat x\right.\\
&{}\left.+sin(kz-\omega t)\hat y\right]
\end{align*}
Hence real part of $\vec E$ is
\begin{align*}
Re \vec E&=E_0\left[cos(kz-\omega t) \hat x\right.\\
&{}\left.+cos(kz-\omega t)\hat y\right]
\end{align*}
which represents plane polarized light.
Now consider the option (B)
\begin{align*}
\vec E&=E_0(\hat x+i\hat y)exp[i(kz-\omega t)]\\
&=E_0(\hat x+i\hat y)\left(cos(kz-\omega t)\right.\\
&\left. +isin(kz-\omega t)\right)\\
&=E_0\left[cos(kz-\omega t) \hat x\right.\\
&\left.-sin(kz-\omega t)\hat y\right]\\
&+iE_0\left[sin(kz-\omega t)\hat x\right.\\
&\left.+cos(kz-\omega t)\hat y\right]
\end{align*}
\begin{align*}
Re \vec E&=E_0\left[cos(kz-\omega t) \hat x\right.\\
&\left.-sin(kz-\omega t)\hat y\right]
\end{align*}
Which represents a circularly polarized light, as
\begin{align*}
E_x^2+E_y^2&=E_0^2cos^2(kz-\omega t)\\
&+E_0^2sin^2(kz-\omega t)\\
&=E_0^2
\end{align*}
is equation of circle. Hence (B) is correct option.
An unbiased coin is tossed $n$ times. The probability that exactly $m$ heads will
come up is
$\frac{n}{2^m}$
$\frac{1}{2^n}\frac{n!}{m!(n-m)!}$
$\frac{1}{2^m}\frac{n!}{m!(n-m)!}$
$\frac{m}{2^n}$
This problem is equivalent to 1D random walk problem. In a single toss probability getting head is $p=\frac{1}{2}$ and probability of getting tail is $q=\frac{1}{2}$. In a sequences of $n$ tosses probability of getting $m$ heads and $n-m$ tails is given by
$$p^mq^{(n-m)}=\left(\frac{1}{2}\right)^m\left(\frac{1}{2}\right)^{n-m}$$
However, total combinations of $m$ times head up and $(n-m)$ times tail up are given by
$$\frac{n!}{m!(n-m)!}$$
Hence, probability of getting $m$ heads is
\begin{align*}
P&=\frac{n!}{m!(n-m)!}\left(\frac{1}{2}\right)^m\left(\frac{1}{2}\right)^{n-m}\\
&=\frac{n!}{m!(n-m)!}\left(\frac{1}{2}\right)^n
\end{align*}
Hence, answer is (B).
No comments :
Post a Comment