Physics Resonance: Problem set 13 -->

Notice

Sunday, 23 October 2016

Problem set 13

  1. A rod of length $l_0$ makes an angle $\theta_0$ with the y-axis in its rest frame, while the rest frame moves to the right along the x-axis with relativistic speed $v$ with respect to lab frame. If $\gamma=\frac{1}{\sqrt{1-v^2/c^2}}$, the angle $\theta$ in the lab frame is
    1. $\theta=\tan^{-1}{(\gamma\tan\theta_0)}$
    2. $\theta=\tan^{-1}{(\gamma\cot\theta_0)}$
    3. $\theta=\tan^{-1}{(\frac{1}{\gamma}\tan\theta_0)}$
    4. $\theta=\tan^{-1}{(\frac{1}{\gamma}\cot\theta_0)}$
  2. A particle of mass $m$ moves in a potential $V(x)=\frac{1}{2}m\omega^2x^2+\frac{1}{2}m\mu v^2$, where $x$ is the position coordinate, $v$ is the speed, and $\omega$ and $\mu$ are constants. The canonical (conjugate) momentum of the particle is
    1. $p=m(1+\mu)v$
    2. $p=mv$
    3. $p=m\mu v$
    4. $p=m(1-\mu)v$
  3. A solid sphere of radius $R$ carries a uniform volume charge density $\rho$. The magnitude of electric field inside the sphere at a distance $r$ from center is
    1. $\frac{r\rho}{3\epsilon_0}$
    2. $\frac{R\rho}{3\epsilon_0}$
    3. $\frac{R^2\rho}{r\epsilon_0}$
    4. $\frac{R^3\rho}{r^2\epsilon_0}$
  4. The electric field $\vec E(\vec r,t)$ for a circularly polarized electromagnetic wave propagating along the positive $z$ direction is
    1. $E_0(\hat x+\hat y)exp[i(kz-\omega t)]$
    2. $E_0(\hat x+i\hat y)exp[i(kz-\omega t)]$
    3. $E_0(\hat x+i\hat y)exp[i(kz+\omega t)]$
    4. $E_0(\hat x+\hat y)exp[i(kz+\omega t)]$
  5. An unbiased coin is tossed $n$ times. The probability that exactly $m$ heads will come up is
    1. $\frac{n}{2^m}$
    2. $\frac{1}{2^n}\frac{n!}{m!(n-m)!}$
    3. $\frac{1}{2^m}\frac{n!}{m!(n-m)!}$
    4. $\frac{m}{2^n}$

No comments :

Post a Comment