Loading web-font TeX/Math/Italic
Physics Resonance: Problem set 13 -->

Notice

Sunday, 23 October 2016

Problem set 13

  1. A rod of length l_0 makes an angle \theta_0 with the y-axis in its rest frame, while the rest frame moves to the right along the x-axis with relativistic speed v with respect to lab frame. If \gamma=\frac{1}{\sqrt{1-v^2/c^2}}, the angle \theta in the lab frame is
    1. \theta=\tan^{-1}{(\gamma\tan\theta_0)}
    2. \theta=\tan^{-1}{(\gamma\cot\theta_0)}
    3. \theta=\tan^{-1}{(\frac{1}{\gamma}\tan\theta_0)}
    4. \theta=\tan^{-1}{(\frac{1}{\gamma}\cot\theta_0)}
  2. A particle of mass m moves in a potential V(x)=\frac{1}{2}m\omega^2x^2+\frac{1}{2}m\mu v^2, where x is the position coordinate, v is the speed, and \omega and \mu are constants. The canonical (conjugate) momentum of the particle is
    1. p=m(1+\mu)v
    2. p=mv
    3. p=m\mu v
    4. p=m(1-\mu)v
  3. A solid sphere of radius R carries a uniform volume charge density \rho. The magnitude of electric field inside the sphere at a distance r from center is
    1. \frac{r\rho}{3\epsilon_0}
    2. \frac{R\rho}{3\epsilon_0}
    3. \frac{R^2\rho}{r\epsilon_0}
    4. \frac{R^3\rho}{r^2\epsilon_0}
  4. The electric field \vec E(\vec r,t) for a circularly polarized electromagnetic wave propagating along the positive z direction is
    1. E_0(\hat x+\hat y)exp[i(kz-\omega t)]
    2. E_0(\hat x+i\hat y)exp[i(kz-\omega t)]
    3. E_0(\hat x+i\hat y)exp[i(kz+\omega t)]
    4. E_0(\hat x+\hat y)exp[i(kz+\omega t)]
  5. An unbiased coin is tossed n times. The probability that exactly m heads will come up is
    1. \frac{n}{2^m}
    2. \frac{1}{2^n}\frac{n!}{m!(n-m)!}
    3. \frac{1}{2^m}\frac{n!}{m!(n-m)!}
    4. \frac{m}{2^n}

No comments :

Post a Comment