Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Tuesday, 25 October 2016
Problem set 14
A particle of unit mass moves in a potential V(x)=ax^2+\frac{b}{x^2}, where a and b are positive constants. The angular frequency of small oscillations about the minimum of the potential is
\sqrt{8b}
\sqrt{8a}
\sqrt{8a/b}
\sqrt{8b/a}
The equation of motion is
m\ddot{x}=F=-kx\ddot{x}=-\frac{k}{m}x=-\omega^2 x\begin{align*}
\omega&=\sqrt{-\frac{\ddot{x}}{x}}=\sqrt{-\frac{m\ddot{x}}{mx}}\\
&=\sqrt{-\frac{F}{mx}}=\sqrt{\frac{\frac{dV}{dx}}{mx}}\\
&=\sqrt{\frac{\frac{d^2V}{dx^2}}{m}}
\end{align*}
Minimum of potential occurs at mean position x_0. Hence frequency of oscillation about the minimum of the potential is
\omega=\sqrt{\frac{\left.\frac{d^2V}{dx^2}\right|_{x=x_0}}{m}}\frac{dV}{dx}=2ax-\frac{2b}{x^3}
At minimum potential energy, we have
\left.\frac{dV}{dx}\right|_{x=x_0}=0\therefore 2ax_0-\frac{2b}{x_0^3}=0\therefore x_0^4=\frac{b}{a}\frac{d^2V}{dx^2}=2a+\frac{6b}{x^4}\left.\frac{d^2V}{dx^2}\right|_{x=x_0}=2a+\frac{6b}{x_0^4}=8a\omega=\sqrt{\frac{\left.\frac{d^2V}{dx^2}\right|_{x=x_0}}{m}}=\sqrt{\frac{8a}{m}}=\sqrt{8a}
A signal of frequency 10 kHz is being digitized by an A/D converter. A possible sampling time which can be used is
100\quad \mu s
40\quad \mu s
60\quad \mu s
200\quad \mu s
The conversion time is the time required to complete a conversion of the input signal. It establishes the upper signal frequency limit that can be sampled without aliasing
f_{max}=\frac{1}{2\times conversion~time}\begin{align*}
conversion~time &=\frac{1}{2\times f_{max}}\\
&=\frac{1}{2\times 10\times10^3}\\
&=5\times10^{-5}=50\mu S
\end{align*}
Hence answer is (B).
Supplementary information: AD converter specifications:
The conversion time is the time required to complete a conversion of the input singnal. It establishes the upper signal frequency limit that can be sampled without aliasing
f_{max}=\frac{1}{2\times conversion~time}
Resolution: The number of bits in the converter gives the resolution
{\scriptstyle Resolution=\frac{full-scale~signal}{2^n}}
Accuracy: Accuracy describes how close the measurement is to the actual value.
Accuracy=\frac{V_{resolution}}{V_{signal}}\times 100\%
The electrostatic potential V ( x, y) in free space in a region where the charge
density \rho is zero is given by
V ( x, y)=4e^{2x}+f(x)-3y. Given that
the x-component of the electric field, E_x,
and V are zero at the origin, f (x) is
3x^2-4e^{2x}+8x
3x^2-4e^{2x}+16x
4e^{2x}-8
3x^2-4e^{2x}
V ( x, y) is zero at origin is zero gives f(0)=-4. This requirement is satisfied by all options. So let us calculate electric field.
\vec F=q_0\vec E
If test charge q_0=1 then
\begin{align*}
\vec E&=\vec F=-\vec \nabla V\\
&={\scriptstyle -\left(\hat i\frac{\partial}{\partial x}+\hat j\frac{\partial}{\partial y}+\hat k\frac{\partial}{\partial z}\right)\left(4e^{2x}+f(x)-3y\right)}
\end{align*}\vec E=-\hat i \left(8e^{2x}+\frac{\partial f(x)}{\partial x}\right)+\hat j(3)
Hence, x-component of electric field is
E_x(x)=-\left(8e^{2x}+\frac{\partial f(x)}{\partial x}\right)
However, E_x=0 at origin.
E_x(0)=-\left(8e^{0}+\frac{\partial f(0)}{\partial x}\right)=0
Hence,
\frac{\partial f(0)}{\partial x}=-8
For f(x)=3x^2-4e^{2x}+8x, \frac{\partial f}{\partial x}=6x-8e^{2x}+8\frac{\partial f(0)}{\partial x}=0-8+8=0
For f(x)=3x^2-4e^{2x}+16x, \frac{\partial f}{\partial x}=6x-8e^{2x}+16\frac{\partial f(0)}{\partial x}=0-8+16=8
For f(x)=4e^{2x}-8, \frac{\partial f}{\partial x}=8e^{2x}\frac{\partial f(0)}{\partial x}=8
For f(x)=3x^2-4e^{2x}, \frac{\partial f}{\partial x}=6x-8e^{2x}\frac{\partial f(0)}{\partial x}=0-8=-8
Hence, Answer is (D).
Consider the transition of liquid water to steam as water boils at a temperature of 100^oC under a pressure of 1 atmosphere. Which one of the following quantities does not change discontinuously at the transition?
The Gibbs free energy
The internal energy
The entropy
The specific volume
(A) The Gibbs free energy.
The value of the integral \int\limits_Cdz\:z^2\:e^z, where C is an open contour in the complex z-plane as shown in the figure below, is:
\frac{5}{e}+e
e-\frac{5}{e}
\frac{5}{e}-e
-\frac{5}{e}-e
\begin{align*}
&\int_Cdz\:z^2\:e^z\\
&=\int_Cd(x+iy)\:(x+iy)^2\:e^{(x+iy)}
\end{align*}
Along path (1) x=1, dx=0 and y changes 0 to 1
\begin{align*}
I_1&=i\int_0^1 (1+iy)^2e^{(1+iy)}dy\\
&=i\int_0^1 (1-y^2+2iy)e^{(1+iy)}dy
\end{align*}
Along path (2) y=1, dy=0 and x changes 1 to -1\begin{align*}
I_2&=\int_{-1}^1 (x+i)^2e^{(x+i)}dx\\
&=\int_{-1}^1 (x^2-1+2ix)e^{(x+i)}dx
\end{align*}
Along path (3) x=-1, dx=0 and y changes 1 to 0
\begin{align*}
I_3&=i\int_{-1}^0 (-1+iy)^2e^{(-1+iy)}dy\\
&=i\int_{-1}^0 (1-y^2-2iy)e^{(-1+iy)}dy
\end{align*}I=I_1+I_2+I_3=\frac{5}{e}+e
No comments :
Post a Comment