Physics Resonance: Problem set 74 -->

Notice

Monday, 20 February 2017

Problem set 74

  1. The wavefunction of a particle in a one-dimensional potential at time $t=0$ is $\psi(x,t=0)=\frac{1}{\sqrt{5}}\left[2\psi_0(x)-\psi_1(x)\right]$ where $\psi_0(x)$ and $\psi_1(x)$ are the ground and the first excited states of the particle with corresponding energies $E_0$ and $E_1$. The wavefunction of the particle at a time $t$ is
    1. $\frac{1}{\sqrt{5}}e^{-i(E_0+E_1)t/2\hbar}\left[2\psi_0(x)-\psi_1(x)\right]$
    2. $\frac{1}{\sqrt{5}}e^{-iE_0t/\hbar}\left[2\psi_0(x)-\psi_1(x)\right]$
    3. $\frac{1}{\sqrt{5}}e^{-iE_1t/\hbar}\left[2\psi_0(x)-\psi_1(x)\right]$
    4. ${\scriptstyle \frac{1}{\sqrt{5}}\left[2\psi_0(x)e^{-iE_0t/\hbar}-\psi_1(x)e^{-iE_1t/\hbar}\right]}$
  2. The commutator $[L_x, y]$, where $L_x$ is the $x$-component of the angular momentum operator and $y$ is the $y$-component of the position operator, is equal to
    1. 0
    2. $i\hbar x$
    3. $i\hbar y$
    4. $i\hbar z$
  3. In hydrogenic states, the probability of finding an electron at $r = 0$ is
    1. zero in state $\phi_{1s}(r)$
    2. non-zero in state $\phi_{1s}(r)$
    3. zero in state $\phi_{2s}(r)$
    4. non-zero in state $\phi_{2p}(r)$
  4. Each of the two isolated vessels, $A$ and $B$ of fixed volumes, contains $N$ molecules of a perfect monatomic gas at a pressure $P$. The temperatures of $A$ and $B$ are $T_1$ and $T_2$, respectively. The two vessels are brought into thermal contact. At equilibrium, the change in entropy is
    1. $\frac{3}{2}Nk_B\ln{\left[\frac{T_1^2+T_2^2}{4T_1T_2}\right]}$
    2. $Nk_B\ln{\left(\frac{T_2}{T_1}\right)}$
    3. $\frac{3}{2}Nk_B\ln{\left[\frac{(T_1+T_2)^2}{4T_1T_2}\right]}$
    4. $2Nk_B$
  5. The mean internal energy of a one-dimensional classical harmonic oscillator in equilibrium with a heat bath of temperature $T$ is
    1. $\frac{1}{2}k_BT$
    2. $k_BT$
    3. $\frac{3}{2}k_BT$
    4. $3k_BT$

No comments :

Post a Comment