Physics Resonance: Problem set 71 -->

Notice

Tuesday 14 February 2017

Problem set 71

  1. A rod of length $L$ carries a total charge $Q$ distributed uniformly. If this is observed in a frame moving with a speed $v$ along the rod, the change per unit length (as measured by the moving observer) is
    1. $\frac{Q}{L}\left(1-\frac{v^2}{c^2}\right)$
    2. $\frac{Q}{L}\sqrt{1-\frac{v^2}{c^2}}$
    3. $\frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}$
    4. $\frac{Q}{L\left(1-\frac{v^2}{c^2}\right)}$
  2. The electric and magnetic fields in the charge free region $z > 0$ are given by $$\vec E(\vec r,t)=E_0e^{-k_1z}\cos{(k_2x-\omega t)}\hat j$$ $${\scriptstyle\vec B(\vec r,t)=\frac{E_0}{\omega}e^{-k_1z}\left[k_1\!\sin{(k_2x-\omega t)}\hat i+k_2\!\cos{(k_2x-\omega t)}\hat k\right]}$$ where $\omega$, $k_1$, and $k_2$ are positive constants. The average energy flow in $x$-direction is
    1. $\frac{E_0^2k_2}{2\mu_0\omega}e^{-2k_1z}$
    2. $\frac{E_0^2k_2}{\mu_0\omega}e^{-2k_1z}$
    3. $\frac{E_0^2k_1}{2\mu_0\omega}e^{-2k_1z}$
    4. $\frac{1}{2}c\epsilon_0E_0^2e^{-2k_1z}$
  3. A uniform magnetic field in the positive $z$-direction passes through a circular wire loop of radius 1 cm and resistance 1 $\omega$ lying in $xy$-plane. The field strength is reduced from 10 tesla to 9 tesla in 1 s. The charge transferred across any point in the wire is approximately
    1. $3.1\times10^{-4}$ coulomb
    2. $3.4\times10^{-4}$ coulomb
    3. $4.2\times10^{-4}$ coulomb
    4. $5.2\times10^{-4}$ coulomb
  4. A particle of mass $m$ is in a potential $V=\frac{1}{2}m\omega^2 x^2$, where $\omega$ is a constant. Let $\hat a=\sqrt{\frac{m\omega}{2\hbar}}\left(\hat x+\frac{i\hat p}{m\omega}\right)$. In the Heisenberg picture $\frac{d\hat a}{dt}$ is given by
    1. $\omega\hat a$
    2. $-i\omega\hat a$
    3. $\omega\hat a^\dagger$
    4. $i\omega\hat a^\dagger$
  5. Two different sets of orthogonal basis vectors $\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right\}$ and $\left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}\right\}$ are given for a two-dimensional real vector space. The matrix representation of a linear operator $\hat A$ in these bases are related by a unitary transformation. The unitary matrix may be chosen to be
    1. $\begin{pmatrix}0&-1\\1&0\end{pmatrix}$
    2. $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
    3. $\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}$
    4. $\frac{1}{\sqrt{2}}\begin{pmatrix}1&0\\1&1\end{pmatrix}$

1 comment :

  1. Thanks sir for providing such valuable information to us..........

    ReplyDelete