Processing math: 100%
Physics Resonance: Problem set 71 -->

Notice

Tuesday, 14 February 2017

Problem set 71

  1. A rod of length L carries a total charge Q distributed uniformly. If this is observed in a frame moving with a speed v along the rod, the change per unit length (as measured by the moving observer) is
    1. \frac{Q}{L}\left(1-\frac{v^2}{c^2}\right)
    2. \frac{Q}{L}\sqrt{1-\frac{v^2}{c^2}}
    3. \frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}
    4. \frac{Q}{L\left(1-\frac{v^2}{c^2}\right)}
  2. The electric and magnetic fields in the charge free region z > 0 are given by \vec E(\vec r,t)=E_0e^{-k_1z}\cos{(k_2x-\omega t)}\hat j
    {\scriptstyle\vec B(\vec r,t)=\frac{E_0}{\omega}e^{-k_1z}\left[k_1\!\sin{(k_2x-\omega t)}\hat i+k_2\!\cos{(k_2x-\omega t)}\hat k\right]}
    where \omega, k_1, and k_2 are positive constants. The average energy flow in x-direction is
    1. \frac{E_0^2k_2}{2\mu_0\omega}e^{-2k_1z}
    2. \frac{E_0^2k_2}{\mu_0\omega}e^{-2k_1z}
    3. \frac{E_0^2k_1}{2\mu_0\omega}e^{-2k_1z}
    4. \frac{1}{2}c\epsilon_0E_0^2e^{-2k_1z}
  3. A uniform magnetic field in the positive z-direction passes through a circular wire loop of radius 1 cm and resistance 1 \omega lying in xy-plane. The field strength is reduced from 10 tesla to 9 tesla in 1 s. The charge transferred across any point in the wire is approximately
    1. 3.1\times10^{-4} coulomb
    2. 3.4\times10^{-4} coulomb
    3. 4.2\times10^{-4} coulomb
    4. 5.2\times10^{-4} coulomb
  4. A particle of mass m is in a potential V=\frac{1}{2}m\omega^2 x^2, where \omega is a constant. Let \hat a=\sqrt{\frac{m\omega}{2\hbar}}\left(\hat x+\frac{i\hat p}{m\omega}\right). In the Heisenberg picture \frac{d\hat a}{dt} is given by
    1. \omega\hat a
    2. -i\omega\hat a
    3. \omega\hat a^\dagger
    4. i\omega\hat a^\dagger
  5. Two different sets of orthogonal basis vectors \left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right\} and \left\{\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix},\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}\right\} are given for a two-dimensional real vector space. The matrix representation of a linear operator \hat A in these bases are related by a unitary transformation. The unitary matrix may be chosen to be
    1. \begin{pmatrix}0&-1\\1&0\end{pmatrix}
    2. \begin{pmatrix}0&1\\1&0\end{pmatrix}
    3. \frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix}
    4. \frac{1}{\sqrt{2}}\begin{pmatrix}1&0\\1&1\end{pmatrix}

1 comment :

  1. Thanks sir for providing such valuable information to us..........

    ReplyDelete