Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Sunday, 12 February 2017
Problem set 70
Consider the differential equation \frac{dy}{dx}=x^2-y with initial condition y=2 at x=0. Let y_{(1)} and y_{(1/2)} be the solutions at x=1 obtained using Euler's forward algorithm with step size 1 and \frac{1}{2} respectively. The value of \left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)} is
-1/2
-1
1/2
1
Euler's forward formula is
y_{n+1}=y_n+hf(x_n,y_n)
where, f(x,y)=x^2-y.
\begin{align*}
y_{1}&=y_0+f(x_0,y_0)\\
&=2+f(0,2)\\
&=0
\end{align*}\begin{align*}
y_{1/2}&=y_0+\frac{1}{2}f(x_0,y_0)\\
&=2+\frac{1}{2}f(0,2)\\
&=1
\end{align*}\left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)}=-1
Hence, answer is (B)
Let f(x,t) be a solution of the wave equation \frac{\partial^2f}{\partial t^2}=v^2\frac{\partial^2f}{\partial x^2} in 1-dimension. If at t=0, f(x,0)=e^{-x^2} and \frac{\partial f}{\partial t}(x,0)=0 for all x, then f(x,t) for all future times t > 0 is described by
According to d’Alambert’s formula solution of wave equation is given by
\begin{align*}
f(x,t)&=\frac{f(x-vt,0)+f(x+vt,0)}{2}\\
&+\frac{1}{2v}\int\limits_{x-vt}^{x+vt}\frac{\partial f(x,0)}{\partial t}dx\\
&=\frac{\left[e^{-(x-vt)^2}+e^{-(x+vt)^2}\right]}{2}\\
&+\frac{1}{2v}\int\limits_{x-vt}^{x+vt}0 dx\\
&=\frac{\left[e^{-(x-vt)^2}+e^{-(x+vt)^2}\right]}{2}
\end{align*}
Hence, answer is (D)
Let q and p be canonical coordinate and momentum of a dynamical system. Which of the following transformation is canonical?
A: Q_1=\frac{1}{\sqrt{2}}q^2 and P_1=\frac{1}{\sqrt{2}}p^2
B: Q_2=\frac{1}{\sqrt{2}}(p+q) and P_2=\frac{1}{\sqrt{2}}(p-q)
neither A nor B
both A and B
only A
only B
A transformation is said be canonical if it satisfies Poisson Bracket \left\{Q,P\right\}_{q,p}=1 i.e.
\frac{\partial Q}{\partial q}\frac{\partial P}{\partial p}-\frac{\partial Q}{\partial p}\frac{\partial P}{\partial q}=1
Clearly,
\frac{\partial Q_2}{\partial q}\frac{\partial P_2}{\partial p}-\frac{\partial Q_2}{\partial p}\frac{\partial P_2}{\partial q}=1
Hence, answer is (D)
The differential cross-section for scattering by a target is given by \frac{d\sigma}{d\Omega}(\theta,\phi)=a^2+b^2\cos^2\theta. If N is the flux of the incoming particles, the number of particles scattered per unit time is
Consider a rectangular wave guide with transverse dimensions 2 m \times 1 m driven with an angular frequency \omega=10^9\: rad/s. Which transverse electric (TE) modes will propagate in this wave guide?
TE_{10}, TE_{01}, and TE_{20}
TE_{10}, TE_{11}, and TE_{20}
TE_{01}, TE_{10}, and TE_{11}
TE_{01}, TE_{10}, and TE_{22}
Cut off frequency for rectangular waveguide is given by
f_{c_{mn}}=\frac{v}{2}\sqrt{\left(\frac{m}{a}\right)^2+\left(\frac{n}{b}\right)^2}
where, v=\frac{1}{\sqrt{\epsilon_0\mu_0}}\frac{1}{\sqrt{\epsilon_r}}=\frac{c}{\sqrt{\epsilon_r}} is velocity propagation in dielectric.
The cutoff frequency for TE_{mn} mode is the operating frequency below which attenuation occurs and above which propagation takes place.
For air filled wave guide v=cf_{c_{mn}}=\frac{c}{2}\sqrt{\left(\frac{m}{a}\right)^2+\left(\frac{n}{b}\right)^2}
Now, \omega=10^9\: rad/s, hence, f=\frac{\omega}{2\pi}=1.6\times10^8\:1/sec\begin{align*}
f_{c_{22}}&=\frac{3\times10^8}{2}\sqrt{\left(\frac{2}{2}\right)^2+\left(\frac{2}{1}\right)^2}\\
&=3.35\times10^8\:1/sec
\end{align*}\begin{align*}
f_{c_{20}}&=\frac{3\times10^8}{2}\sqrt{\left(\frac{2}{2}\right)^2+\left(\frac{0}{1}\right)^2}\\
&=1.5\times10^8\:1/sec
\end{align*}\begin{align*}
f_{c_{11}}&=\frac{3\times10^8}{2}\sqrt{\left(\frac{1}{2}\right)^2+\left(\frac{1}{1}\right)^2}\\
&=1.68\times10^8\:1/sec
\end{align*}\begin{align*}
f_{c_{10}}&=\frac{3\times10^8}{2}\sqrt{\left(\frac{1}{2}\right)^2+\left(\frac{0}{1}\right)^2}\\
&=0.75\times10^8\:1/sec
\end{align*}\begin{align*}
f_{c_{01}}&=\frac{3\times10^8}{2}\sqrt{\left(\frac{0}{2}\right)^2+\left(\frac{1}{1}\right)^2}\\
&=1.5\times10^8\:1/sec
\end{align*}
As, f < f_{c_{22}} and f < f_{c_{11}}, these modes will attenuate and as f < f_{c_{22}}, f > f_{c_{10}}, f > f_{c_{01}}, these modes will propagate.
No comments :
Post a Comment