Physics Resonance: Problem set 70 -->

Notice

Sunday, 12 February 2017

Problem set 70

  1. Consider the differential equation $\frac{dy}{dx}=x^2-y$ with initial condition $y=2$ at $x=0$. Let $y_{(1)}$ and $y_{(1/2)}$ be the solutions at $x=1$ obtained using Euler's forward algorithm with step size 1 and $\frac{1}{2}$ respectively. The value of $\left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)}$ is
    1. $-1/2$
    2. $-1$
    3. $1/2$
    4. 1
  2. Let $f(x,t)$ be a solution of the wave equation $\frac{\partial^2f}{\partial t^2}=v^2\frac{\partial^2f}{\partial x^2}$ in 1-dimension. If at $t=0$, $f(x,0)=e^{-x^2}$ and $\frac{\partial f}{\partial t}(x,0)=0$ for all $x$, then $f(x,t)$ for all future times $t > 0$ is described by
    1. $e^{-(x^2-v^2t^2)}$
    2. $e^{-(x-vt)^2}$
    3. $\frac{1}{4}e^{-(x-vt)^2}+\frac{3}{4}e^{-(x+vt)^2}$
    4. $\frac{1}{2}\left[e^{-(x-vt)^2}+e^{-(x+vt)^2}\right]$
  3. Let $q$ and $p$ be canonical coordinate and momentum of a dynamical system. Which of the following transformation is canonical?

    A: $Q_1=\frac{1}{\sqrt{2}}q^2$ and $P_1=\frac{1}{\sqrt{2}}p^2$

    B: $Q_2=\frac{1}{\sqrt{2}}(p+q)$ and $P_2=\frac{1}{\sqrt{2}}(p-q)$

    1. neither A nor B
    2. both A and B
    3. only A
    4. only B
  4. The differential cross-section for scattering by a target is given by $\frac{d\sigma}{d\Omega}(\theta,\phi)=a^2+b^2\cos^2\theta$. If $N$ is the flux of the incoming particles, the number of particles scattered per unit time is
    1. $\frac{4\pi}{3}N(a^2+b^2)$
    2. $4\pi N(a^2+\frac{1}{6}b^2)$
    3. $4\pi N(\frac{1}{2}a^2+\frac{1}{3}b^2)$
    4. $4\pi N(a^2+\frac{1}{3}b^2)$
  5. Consider a rectangular wave guide with transverse dimensions 2 m $\times$ 1 m driven with an angular frequency $\omega=10^9\: rad/s$. Which transverse electric (TE) modes will propagate in this wave guide?
    1. $TE_{10}$, $TE_{01}$, and $TE_{20}$
    2. $TE_{10}$, $TE_{11}$, and $TE_{20}$
    3. $TE_{01}$, $TE_{10}$, and $TE_{11}$
    4. $TE_{01}$, $TE_{10}$, and $TE_{22}$

No comments :

Post a Comment