Physics Resonance: April 2017 -->

Notice

Friday, 28 April 2017

Problem set 94

  1. The energy density for photons in a cavity is proportional to
    1. $T^3$
    2. $T$
    3. $T^4$
    4. $T^{4/3}$
  2. Let $\rho$ be the density matrix for a system. Then
    1. $Tr(\rho)=0$
    2. $Tr(\rho) < 0$
    3. $0\leq Tr(\rho) < 1$
    4. $Tr(\rho)=1$
  3. A system has only two energy levels $E_1$ and $E_2$. In equilibrium at temperature $T$, the number of particles occupying level $E_1$ is double of those occupying level $E_2$. The value of $E_2-E_1$ must be ($k$ is Boltzmann constant):
    1. $kT\ln2$
    2. $kT\ln3$
    3. $3kT$
    4. $2kT$
  4. The quantities (i) isothermal compressibility (ii) volume coefficient of expansion are :
    1. Extensive and intensive respectively
    2. Intensive and extensive respectively
    3. Both extensive
    4. Both intensive
  5. The chemical potential in classical limit is:
    1. Zero
    2. Negative
    3. Positive
    4. Complex quantity

Thursday, 27 April 2017

Problem set 93

  1. Uncertainty relation holds between :
    1. Time and space
    2. Life time and energy
    3. Position and energy
    4. Momentum and energy
  2. Addition of angular momentum $j_1=1$ and $j_2=\frac{1}{2}$ will result in 6 states, of which the number of linearly independent states with magnetic number $m=-\frac{1}{2}$ is :
    1. zero
    2. 6
    3. 3
    4. 2
  3. In a scattering event by a spherical symmetric potential, only P-wave scattering occurs. The angular distribution of differential cross-section is proportional to :
    1. constant
    2. $\cos\theta$
    3. $\cos^2{\theta}$
    4. $a+\sin\theta$
  4. If energy of a two-dimensional simple harmonic oscillator $E=\frac{p_x^2}{2m}+\frac{p_y^2}{2m}+\frac{1}{2}m\omega^2(x^2+y^2)$ is fixed to be $3\hbar\omega$, the entropy is given by ($k_B$ is Boltzmann constant):
    1. $k_B\ln3$
    2. $2k_B\ln3$
    3. $k_B\ln2$
    4. zero
  5. The equation of state for photon gas is:
    1. $pV=\frac{5}{3}E$
    2. $pV=\frac{2}{3}E$
    3. $pV=\frac{1}{3}E$
    4. $pV=\hbar\omega$ for some fixed frequency $\omega$

Tuesday, 25 April 2017

Problem set 92

  1. Given $[x_i,P_j]=i\hbar\delta_{ij}$, $i,j=1,2,3$. $[x_1,P_2^2]$ is:
    1. 0
    2. $i\hbar P_2$
    3. $2x_1$
    4. $2P_2$
  2. Which of the following is an eigen state of square of linear momentum operator $P_x^2$?
    1. $Ax^2$
    2. $A\left(\sin{kx}+\cos{kx}\right)$
    3. $Ae^{-\alpha x^2}$
    4. $A\sin^2{kx}$
  3. The electron in a hydrogen atom is in a superposition state described by the wavefunction $\psi(\vec r)=A\left[4\psi_{100}(\vec r)-2\psi_{211}(\vec r)+\sqrt{6}\psi_{210}(\vec r)-\sqrt{10}\psi_{21-1}(\vec r)\right]$, $\psi_{nlm}(\vec r)$ normalized wave function. The value of normalization constant, $A$, is:
    1. $\frac{1}{3}$
    2. $\frac{1}{6}$
    3. $6$
    4. $36$
  4. Two coherent light sources of intensities I and 9I are used in an interference experiment. The resultant intensity at points where the waves from the two sources with phase difference $\pi$ is :
    1. 16I
    2. 9I
    3. 4I
    4. zero
  5. Non-relativistic hydrogen atom spectrum is proportional to $-1/n^2$. The degeneracy of $n^{th}$ level is:
    1. $n$
    2. $2n+1$
    3. $n^2$
    4. $1/n^2$

Sunday, 23 April 2017

Problem set 91

  1. Which of the following equations signifies the conservative nature of the electric field $\vec E$?
    1. $\vec\nabla\cdot\vec E(\vec r)=\frac{\rho(\vec r)}{\epsilon_0}$
    2. $\vec\nabla\times\vec E(\vec r)=\vec 0$
    3. $\vec\nabla\times\vec E(\vec r,t)=\frac{-\partial\vec B(\vec r,t)}{\partial t}$
    4. $\epsilon_0\mu_0\frac{\partial\vec E(\vec r,t)}{\partial t}=\vec\nabla\times\vec B(\vec r,t)-\mu_0\vec J(\vec r,t)$
  2. Plane electromagnetic wave is propagating through a perfect dielectric material of refractive index $\frac{3}{2}$. The phase difference between the fields $\vec E$ and $\vec B$ associated with the wave passing through the material is
    1. Zero
    2. $\pi$
    3. $\frac{3}{2}\pi$
    4. any non-zero value between $-\pi$ and $\pi$
  3. An electromagnetic wave is propagating in a dielectric medium of permittivity $\epsilon$ and permeability $\mu$ having an electric field vector $\vec E$ associated with the wave. The associated magnetic field $\vec H$ is
    1. Parallel to $\vec E$ with magnitude $E\sqrt{\mu/\epsilon}$
    2. Parallel to $\vec E$ with magnitude $E\sqrt{\epsilon/\mu}$
    3. Perpendicular to $\vec E$ with magnitude $E\sqrt{\mu/\epsilon}$
    4. Perpendicular to $\vec E$ with magnitude $E\sqrt{\epsilon/\mu}$
  4. Power radiated by a point charge moving with constant acceleration of magnitude $\alpha$ is proportional to
    1. $\alpha$
    2. $\alpha^2$
    3. $\alpha^{-1}$
    4. $\alpha^{-2}$
  5. The output of a laser has a bandwidth of $1.2\times10^{14}$ Hz. The coherence length $l_c$ of the output radiation is
    1. 3.6 mm
    2. 50 $\mu$m
    3. 2.5 $\mu$m
    4. 1.5 cm