Physics Resonance: MMP -->

Notice

MMP

  1. The real matrix $A=\begin{pmatrix}a&-f&-g\\ f&a&h\\g&-h&a\end{pmatrix}$ is skew symmetric when
    1. $a=0$
    2. $f=0$
    3. $g=h$
    4. $f=g$ $
  2. If $A$ and $B$ are matrices such that $AB=B$ and $BA=A$ then $A^2+B^2$ equals
    1. 2AB
    2. 2BA
    3. A+B
    4. AB
  3. The average value of function $f(x)=4x^3$ in the interval 1 to 3 is
    1. 15
    2. 20
    3. 30
    4. 40
  4. The matrix $\begin{pmatrix}8&x&0\\4&0&2\\12&6&0\end{pmatrix}$ will become singular if the value of $x$ is
    1. $4$
    2. $6$
    3. $8$
    4. $12$
  5. The value of $$x=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots} }}$$
    1. $\sqrt{2}$
    2. 1.6
    3. $\sqrt{3}$
    4. 0.8
  6. The centre of the circle $\bar z z+(2+3i)\bar z+(2-3i)z+1=0$ is
    1. (2,3)
    2. (3,2)
    3. (-2,-3)
    4. (4,0)
  7. Fourier transform of the function $f(x)=exp(-|x|)$ is
    1. $\frac{1}{\sqrt{2\pi}}\left[\frac{2}{1+k^2}\right]$
    2. $0$
    3. $\frac{1}{\sqrt{\pi}}\left[\frac{1}{k^2}\right]$
    4. $\frac{1}{\sqrt{2\pi}}\left[\frac{1}{1-k^2}\right]$
  8. The area of the triangle whose base is given by $\bar a=5\hat i-3\hat j+4\hat k$ and $\bar b=\hat j-\hat k$ is another side is :
    1. $\sqrt{50}/2$
    2. $\sqrt{61}/2$
    3. $\sqrt{14}/2$
    4. $\sqrt{51}/2$
  9. The position vector $\bar r=x\hat i+y\hat j+z\hat k$, $\bar\nabla.\left(r^2\bar r\right)$ is given by:
    1. 0
    2. $5r^2$
    3. $r^2$
    4. $3r^2$
  10. The eigenvalues of the matrix: $\begin{pmatrix}1&2&3\\0&4&7\\0&0&3\end{pmatrix}$ are:
    1. 1, 4, 3
    2. 3, 7, 3
    3. 7, 3, 2
    4. 1, 2, 3
  11. All solutions of the equation $e^z=-3$ are
    1. $z=\ln \pi\ln 3,~n=\pm1,\pm2,\dots$
    2. ${\scriptstyle z=\ln 3+i(2n+1)\pi,~n=0,\pm1,\pm2,\dots}$
    3. ${\scriptstyle z=\ln 3+i~2n\pi,~n=0,\pm1,\pm2,\dots}$
    4. $z=i3n\pi,~n=\pm1,\pm2,\dots$
  12. The solution of $\frac{dy}{dx}-y=e^{\lambda x}$ is :
    1. $e^{-\lambda x}$
    2. $\frac{1}{\lambda-1}e^{\lambda x}$
    3. $e^{\lambda x}$
    4. $\frac{1}{\lambda}e^{-\lambda x}$
  13. The function $f(z)=u(x,y)+iv(x,y)$ is analytic at $z=x+iy$. The value of $\nabla^2u$ at this point is:
    1. 0
    2. undefined
    3. $\pi$
    4. $e^{-\pi^2}$
  14. The value of the integral $\int\limits_Cdz\:z^2\:e^z$, where C is an open contour in the complex z-plane as shown in the figure below, is:
    1. $\frac{5}{e}+e$
    2. $e-\frac{5}{e}$
    3. $\frac{5}{e}-e$
    4. $-\frac{5}{e}-e$
  15. Let $\vec{a}$ and $\vec{b}$ be two distinct three-dimensional vectors. Then the component of $\vec{b}$ that is perpendicular to $\vec{a}$ is given by
    1. $\frac{\vec{a}\times(\vec{b}\times\vec{a})}{a^2}$
    2. $\frac{\vec{b}\times(\vec{b}\times\vec{a})}{b^2}$
    3. $\frac{(\vec{a}.\vec{b})\vec{b}}{b^2}$
    4. $\frac{(\vec{b}.\vec{a})\vec{a}}{a^2}$
  16. Let $p_n(x)$ (where $n = 0,1,2,\dots$) be a polynomial of degree $n$ with real coefficients, defined in the interval $2\leq n\leq 4$. If $\int_2^4p_n(x)p_m(x)dx=\delta_{nm}$, then
    1. $p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{\frac{3}{2}}(-3-x)$
    2. $p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{3}(3+x)$
    3. $p_0(x)=\frac{1}{2}$ and $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$
    4. $p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$
  17. Which of the following is an analytic function of the complex variable $z = x + iy$ in the domain $| z |< 2$?
    1. $(3+x-iy)^7$
    2. $(1+x+iy)^4(7-x-iy)^3$
    3. $(1-2x-iy)^4(3-x-iy)^3$
    4. $(x+iy-1)^{1/2}$
  18. Consider the matrix $M=\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}$
    1. The eigenvalues of $M$ are
      1. 0, 1, 2
      2. 0, 0, 3
      3. 1, 1, 1
      4. -1, 1, 3
    2. The exponential of M simplifies to ($I$ is the $3\times3$ identity matrix)
      1. $e^M=I+\left(\frac{e^3-1}{3}\right)M$
      2. $e^M=I+M+\frac{M^2}{2!}$
      3. $e^M=I+3^3M$
      4. $e^M=(e-1)M$
  19. A $2\times2$ matrix $A$ has eigenvalues $e^{i\pi/5}$ and $e^{i\pi/6}$. The smallest value of $n$ such that $A^n = I$ is
    1. 20
    2. 30
    3. 60
    4. 120
  20. The unit normal vector at the point $\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)$ on the surface of the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
    1. $\frac{bc\hat i+ca\hat j+ab\hat k}{\sqrt{a^2+b^2+c^2}}$
    2. $\frac{a\hat i+b\hat j+c\hat k}{\sqrt{a^2+b^2+c^2}}$
    3. $\frac{b\hat i+c\hat j+a\hat k}{\sqrt{a^2+b^2+c^2}}$
    4. $\frac{\hat i+\hat j+\hat k}{\sqrt{3}}$
  21. The Taylor expansion of the function $\ln{(\cosh x)}$, where $x$ is real, about the point $x= 0$ starts with the following terms:
    1. $-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots$
    2. $\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots$
    3. $-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
    4. $\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
  22. The value of the integral $\int_C \frac{z^3dz}{z^2-5z+6}$, where $C$ is a closed contour defined by the equation $2|z|- 5 = 0$, traversed in the anti-clockwise direction, is
    1. $-16\pi i$
    2. $16\pi i$
    3. $8\pi i$
    4. $2\pi i$
  23. The function $f(x)$ obeys the differential equation $\frac{d^2f}{dx^2}-(3 - 2i)f = 0$ and satisfies the conditions $f(0) = 1$ and $f(x)\rightarrow \infty$ as $x\rightarrow 0$. The value of $f(\pi)$ is
    1. $e^{2\pi}$
    2. $e^{-2\pi}$
    3. $-e^{-2\pi}$
    4. $-e^{2\pi i}$
  24. If $y=\frac{1}{\tanh x}$, then $x$ is
    1. $\ln{\left(\frac{y+1}{y-1}\right)}$
    2. $\ln{\left(\frac{y-1}{y+1}\right)}$
    3. $\ln{\sqrt{\frac{y-1}{y+1}}}$
    4. $\ln{\sqrt{\frac{y+1}{y-1}}}$
  25. The function $\frac{z}{\sin{\pi z^2}}$ of a complex variable $z$ has
    1. a simple pole at $0$ and poles of order $2$ at $\pm\sqrt{n}$ for $n=1,2,3,\dots$
    2. a simple pole at $0$ and poles of order $2$ at $\pm\sqrt{n}$ and $\pm i\sqrt{n}$ for $n=1,2,3,\dots$
    3. poles of order $2$ at $\pm\sqrt{n}$ for $n=0,1,2,3,\dots$
    4. poles of order $2$ at $\pm n$ for $n=0,1,2,3,\dots$
  26. The Fourier transform of $f(x)$ is $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$. If $f(x)=\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)$, where $\delta(x)$ is the Dirac delta-function (and prime denotes derivative), what is $\tilde{f}(k)$?
    1. $\alpha+i\beta k+i\gamma k^2$
    2. $\alpha+\beta k-\gamma k^2$
    3. $\alpha-i\beta k-\gamma k^2$
    4. $i\alpha+\beta k-i\gamma k^2$
  27. The solution of the differential equation $\frac{dx}{dt}=2\sqrt{1-x^2}$, with initial condition $x=0$ at $t=0$ is
    1. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ \sinh{2t},\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
    2. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{2}\\ 1,\quad t\geq\frac{\pi}{2} \end{cases} \end{align*}
    3. \begin{align*} x=\begin{cases} \sin{2t},\quad 0\leq t<\frac{\pi}{4}\\ 1,\quad t\geq\frac{\pi}{4} \end{cases} \end{align*}
    4. $x=1-\cos{2t},\quad t\geq 0$
  28. Linearly independent solution of the differential equation $$\frac{d^2y}{dx^2}+3\frac{dy}{dx}+2y=0$$ are:
    1. $e^{-x}$, $e^{-2x}$
    2. $e^{-x}$, $e^{2x}$
    3. $e^{-2x}$, $e^{x}$
    4. $e^{2x}$, $e^{x}$
  29. The Hermite polynomial $H_n(x)$ satisfies the differential equation $$\frac{d^2H_n}{dx^2}-2x\frac{dH_n}{dx}+2nH_n(x)=0$$ . The corresponding generating function $G(x,t)=\sum\limits_{n=0}^{\infty}\frac{1}{n!}H_n(x)t^n$ satisfies the
    1. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2t\frac{\partial G}{\partial t}=0$
    2. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}-2t^2\frac{\partial G}{\partial t}=0$
    3. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial G}{\partial t}=0$
    4. $\frac{\partial^2G}{\partial x^2}-2x\frac{\partial G}{\partial x}+2\frac{\partial^2 G}{\partial x\partial t}=0$
  30. The value of the integral $\int_0^8\frac{1}{x^2+5}dx$, evaluated using Simpson’s $\frac{1}{3}$ rule with $h=2$, is
    1. 0.565
    2. 0.620
    3. 0.698
    4. 0.736
  31. The trace of $3\times3$ matrix is 2. Two of its eigenvalues are 1 and 2. The third eigenvalue is
    1. -1
    2. 0
    3. 1
    4. 2
  32. A linear transformation $T$, defined as $T\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}x_1+x_2\\x_2-x_3\end{pmatrix}$, transforms a vector $\vec x$ from a three-dimensional real space to a two-dimensional real space. The transformation matrix $T$ is
    1. $\begin{pmatrix}1&1&0\\0&1&-1\end{pmatrix}$
    2. $\begin{pmatrix}1&0&0\\0&1&0\end{pmatrix}$
    3. $\begin{pmatrix}1&1&1\\-1&1&1\end{pmatrix}$
    4. $\begin{pmatrix}1&0&0\\0&0&1\end{pmatrix}$
  33. The value of $\oint\limits_C\frac{e^{2z}}{(z+1)^4}dz$, where $C$ is circle defined by $|z|=3$, is
    1. $\frac{8\pi i}{3}e^{-2}$
    2. $\frac{8\pi i}{3}e^{-1}$
    3. $\frac{8\pi i}{3}e$
    4. $\frac{8\pi i}{3}e^{2}$
  34. Consider the differential equation $\frac{d^2x}{dt^2}-3\frac{dx}{dt}+2x=0$. If $x=0$ at $t=0$ and $x=1$ at $t=1$, the value of $x$ at $t=2$ is
    1. $e^2+1$
    2. $e^2+e$
    3. $e+2$
    4. $2e$
  35. The rank-2 tensor $x_ix_j$, where $x_i$ are the Cartesian coordinates of the position vector in three dimensions, has 6 independent elements. Under rotation, these 6 elements decompose into irreducible sets (that is, the elements of each set transform only into linear combinations of elements in that set) containing
    1. 4 and 2 elements
    2. 5 and 1 elements
    3. 3, 2 and 1 elements
    4. 4, 1 and 1 elements
  36. Consider the differential equation $\frac{dy}{dx}=x^2-y$ with initial condition $y=2$ at $x=0$. Let $y_{(1)}$ and $y_{(1/2)}$ be the solutions at $x=1$ obtained using Euler's forward algorithm with step size 1 and $\frac{1}{2}$ respectively. The value of $\left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)}$ is
    1. $-1/2$
    2. $-1$
    3. $1/2$
    4. 1
  37. A rod of length $L$ carries a total charge $Q$ distributed uniformly. If this is observed in a frame moving with a speed $v$ along the rod, the change per unit length (as measured by the moving observer) is
    1. $\frac{Q}{L}\left(1-\frac{v^2}{c^2}\right)$
    2. $\frac{Q}{L}\sqrt{1-\frac{v^2}{c^2}}$
    3. $\frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}$
    4. $\frac{Q}{L\left(1-\frac{v^2}{c^2}\right)}$
  38. One of the eigen values of the matrix $\begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix}$ is 5
    1. The other two eigenvalues are
      1. 0 and 0
      2. 1 and 1
      3. 1 and -1
      4. -1 and -1
    2. The normalized eigenvector corresponding to the eigenvalue 5 is
      1. $\frac{1}{\sqrt{2}} \begin{pmatrix}0\\-1\\1\end{pmatrix}$
      2. $\frac{1}{\sqrt{2}} \begin{pmatrix}-1\\1\\0\end{pmatrix}$
      3. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\0\\-1\end{pmatrix}$
      4. $\frac{1}{\sqrt{2}} \begin{pmatrix}1\\1\\0\end{pmatrix}$
  39. The Gauss hypergeometric function $F(a,b,c;z)$, defined by the Taylor series expansion around $z=0$ as $${\textstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n}$$ satisfies the recursion relation
    1. $\frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a-1,b-1,c-1;z)$
    2. $\frac{d}{dz}F(a,b,c;z)=\frac{c}{ab}F(a+1,b+1,c+1;z)$
    3. $\frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a-1,b-1,c-1;z)$
    4. $\frac{d}{dz}F(a,b,c;z)=\frac{ab}{c}F(a+1,b+1,c+1;z)$
  40. Let $(x,y)$ and $(x',y')$ be the coordinate systems used by the observers $O$ and $O'$, respectively. Observer moves with a velocity $v= \beta c$ along their common positive $x$-axis. If $x_+=x+ct$ and $x_-=x-ct$ are the linear combinations of the coordinates, the Lorentz transformation relating $O$ and $O'$ takes the form
    1. $x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$
    2. $x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+$ and $x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-$
    3. $x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$
    4. $x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+$ and $x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-$
  41. In finding the roots of the polynomial $f(x)=3x^3-4x-5$ using the iterative Newton-Raphson method, the initial guess is taken to be $x=2$. In the next iteration its value is nearest to
    1. 1.671
    2. 1.656
    3. 1.559
    4. 1.551
  42. For a particle of energy $E$ and $P$ momentum (in a frame $F$), the rapidity $y$ is defined as $y=\frac{1}{2}\ln{\left(\frac{E+p_3c}{E-p_3c}\right)}$. In a frame $F'$ moving with velocity $v=(0,0,\beta c)$ with respect to $F$, the rapidity $y'$ will be
    1. $y'=y+\frac{1}{2}\ln{\left(1-\beta^2\right)}$
    2. $y'=y-\frac{1}{2}\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
    3. $y'=y+\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
    4. $y'=y+2\ln{\left(\frac{1+\beta}{1-\beta}\right)}$
  43. A function $f(x)$ satisfies the differential equation $\frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a)$, where $\omega$ is positive. The Fourier transform $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$ of $f$, and the solution of the equation are, respectively,
    1. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)$
    2. $\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}e^{-\omega|x-a|}$
    3. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)$
    4. $\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)$
  44. Eigenvalues of the matrix $\begin{bmatrix}1&-1\\1&1\end{bmatrix}$
    1. 1, -1
    2. -1, $-i$
    3. $i$, $-i$
    4. $1+i$, $1-i$
  45. Particular integral of first order linear differential $\frac{dy}{dx}=x+y$ is given by:
    1. $y(x)=-x-1$
    2. $y(x)=x+1$
    3. $y(x)=x-1$
    4. $y(x)=-x+1$
  46. The Fourier transform of a Gaussian function is of the form:
    1. Exponential
    2. Lorentzian
    3. Gaussian
    4. Screened coulomb
  47. The real part of $\log{(3+4i)}$ is :
    1. $\log2$
    2. $\log3$
    3. $\log4$
    4. $\log5$
  48. Consider three vectors $\vec a=\hat i+\hat j+\hat k$, $\vec b=\hat i-\hat j+\hat k$ and $\vec c=\hat i-\hat j-\hat k$. Which of the following statement is true?
    1. $\vec a$, $\vec b$, $\vec c$ are linearly independent
    2. $\vec a$, $\vec b$ are linearly independent
    3. $\vec b$ and $\vec c$ are right angle to each other
    4. $\vec a$ and $\vec c$ are parallel

1 comment :

  1. please provide june 2017 csir question paper solution

    ReplyDelete