The centre of the circle $\bar z z+(2+3i)\bar z+(2-3i)z+1=0$ is
(2,3)
(3,2)
(-2,-3)
(4,0)
Let $z=x+iy$
\begin{align*}
\therefore \bar z z+(2+3i)\bar z+(2-3i)z+1\\
=(x-iy)(x+iy)+(2+3i)(x-iy)\\+(2-3i)(x+iy)+1\\
=x^2+y^2+2x-2iy+3ix+3y\\+2x+2iy-3ix+3y+1\\
=x^2+y^2+4x+6y+1
\end{align*}
$$\therefore\bar z z+(2+3i)\bar z+(2-3i)z+1=0$$
gives
$$(x+2)^2+(y+3)^2-12=0$$
$(x+2)^2+(y+3)^2=12$ is equation of circle with centre $(-2,-3)$ and radius $\sqrt{12}$
Fourier transform of the function $f(x)=exp(-|x|)$ is
$|x|=x$ if $x>0$ and $|x|=-x$ if $x<0$. Fourier transform of $f(x)$ is given by
$$F(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-ikx}f(x)dx$$
\begin{align*}
F(k)={\scriptstyle\frac{1}{\sqrt{2\pi}}\left[\int_{-\infty}^{0}e^{-ikx}e^xdx+\int_{0}^{\infty}e^{-ikx}e^{-x}dx\right]}
\end{align*}
$$F(k)={\scriptstyle\frac{1}{\sqrt{2\pi}}\left[\int_{-\infty}^{0}e^{x(1-ik)}dx+\int_{0}^{\infty}e^{-x(1+ik)}dx\right]}$$
$$F(k)=\frac{1}{\sqrt{2\pi}}\left[\frac{2}{1+k^2}\right]$$
The area of the triangle whose base is given by $\bar a=5\hat i-3\hat j+4\hat k$ and $\bar b=\hat j-\hat k$ is another side is :
Finding all solutions means to find all values of $z$ which will satify $e^z=-3$
\begin{align*}
e^z&=-3\\
&=3(-1)\\
&={\scriptstyle3\left[\cos{(2n+1)\pi}+i\sin{(2n+1)\pi}\right]}\\
&=3e^{i(2n+1)\pi}
\end{align*}
Taking log on both sides we get
$$z=\ln 3+i(2n+1)\pi~~~n=0,\pm1,\pm2,\dots$$
The solution of $\frac{dy}{dx}-y=e^{\lambda x}$ is :
$e^{-\lambda x}$
$\frac{1}{\lambda-1}e^{\lambda x}$
$e^{\lambda x}$
$\frac{1}{\lambda}e^{-\lambda x}$
Just by inspection or substituting $y=\frac{1}{\lambda-1}e^{\lambda x}$ in above equation one can verify that it is the solution. OR
The solution of $\frac{dy}{dx}+p(x)y=q(x)$ is given by
$$y=\frac{\int u(x)q(x)dx+C}{u(x)}$$
where, $u(x)=exp\left(\int p(x)dx\right)$
Here $p(x)=-1$ and $q(x)=e^{\lambda x}$
$$u(x)=exp\left(-\int dx\right)=e^{-x}$$
\begin{align*}
y&=\frac{\int e^{-x}e^{\lambda x}dx+C}{e^{-x}}\\
&=\frac{ e^{(\lambda-1) x}dx+C}{(\lambda-1)e^{-x}}\\
&=\frac{1}{\lambda-1}e^{\lambda x}
\end{align*}
The function $f(z)=u(x,y)+iv(x,y)$ is analytic at $z=x+iy$. The value of $\nabla^2u$ at this point is:
0
undefined
$\pi$
$e^{-\pi^2}$
The function $f(z)=u(x,y)+iv(x,y)$ is analytic at $z=x+iy$ means $u(x,y)$ and $v(x,y)$ satisfy Cauchy-Reiman equations namely
$$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$
$$\therefore\nabla^2u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}$$
$$\nabla^2u=\frac{\partial }{\partial x}\left(\frac{\partial u}{\partial x}\right)+\frac{\partial }{\partial y}\left(\frac{\partial u}{\partial y}\right)$$
\begin{align*}
\nabla^2u&=\frac{\partial }{\partial x}\left(\frac{\partial v}{\partial y}\right)-\frac{\partial }{\partial y}\left(\frac{\partial v}{\partial x}\right)\\
&=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0
\end{align*}
The value of the integral $\int\limits_Cdz\:z^2\:e^z$, where C is an open contour in the complex z-plane as shown in the figure below, is:
$\frac{5}{e}+e$
$e-\frac{5}{e}$
$\frac{5}{e}-e$
$-\frac{5}{e}-e$
\begin{align*}
&\int_Cdz\:z^2\:e^z\\
&=\int_Cd(x+iy)\:(x+iy)^2\:e^{(x+iy)}
\end{align*}
Along path (1) $x=1$, $dx=0$ and $y$ changes 0 to 1
\begin{align*}
I_1&=i\int_0^1 (1+iy)^2e^{(1+iy)}dy\\
&=i\int_0^1 (1-y^2+2iy)e^{(1+iy)}dy
\end{align*}
Along path (2) $y=1$, $dy=0$ and $x$ changes 1 to $-1$
\begin{align*}
I_2&=\int_{-1}^1 (x+i)^2e^{(x+i)}dx\\
&=\int_{-1}^1 (x^2-1+2ix)e^{(x+i)}dx
\end{align*}
Along path (3) $x=-1$, $dx=0$ and $y$ changes 1 to 0
\begin{align*}
I_3&=i\int_{-1}^0 (-1+iy)^2e^{(-1+iy)}dy\\
&=i\int_{-1}^0 (1-y^2-2iy)e^{(-1+iy)}dy
\end{align*}
$$I=I_1+I_2+I_3=\frac{5}{e}+e$$
Let $\vec{a}$ and $\vec{b}$ be two distinct three-dimensional vectors. Then the component of $\vec{b}$ that is perpendicular to $\vec{a}$ is given by
Let $p_n(x)$ (where $n = 0,1,2,\dots$) be a polynomial of degree $n$ with real coefficients, defined in the interval
$2\leq n\leq 4$. If $\int_2^4p_n(x)p_m(x)dx=\delta_{nm}$, then
$p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{\frac{3}{2}}(-3-x)$
$p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{3}(3+x)$
$p_0(x)=\frac{1}{2}$ and $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$
$p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$
For $p_0(x)=\frac{1}{\sqrt{2}}$, we have
\begin{align*}
\int_2^4p_0(x)p_0(x)dx&=\frac{1}{2}\int_2^4dx\\
&=\frac{1}{2}[x]_2^4=1
\end{align*}
Hence, $p_0(x)=\frac{1}{\sqrt{2}}$ is correct option.
For, $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$, we have
\begin{align*}
&\int_2^4p_1(x)p_1(x)dx\\
&=\frac{3}{2}\int_2^4(3-x)^2dx\\
&=\frac{3}{2}\int_2^4(9-6x+x^2)dx
\end{align*}
\begin{align*}
&\int_2^4p_1(x)p_1(x)dx\\
&=\frac{3}{2}\left[9x-3x^2+\frac{x^3}{3}\right]_2^4\\
&=1
\end{align*}
\begin{align*}
&\int_2^4p_0(x)p_1(x)dx\\
&=\sqrt{\frac{3}{4}}\int_2^4(3-x)dx\\
&=\sqrt{\frac{3}{4}}\left[3x-\frac{x^2}{2}\right]_2^4\\
&=0
\end{align*}
Hence, orthonormality condition is satified for $p_0(x)=\frac{1}{\sqrt{2}}$ and $p_1(x)=\sqrt{\frac{3}{2}}(3-x)$.
Hence, answer is (D)
Which of the following is an analytic function of the complex variable $z = x + iy$ in the domain $| z |< 2$?
$(3+x-iy)^7$
$(1+x+iy)^4(7-x-iy)^3$
$(1-2x-iy)^4(3-x-iy)^3$
$(x+iy-1)^{1/2}$
A function is analytic if it satisfies Cauchy–Riemann condition i.e. a function $f(z)$ is analytic if $\frac{\partial f(z)}{\partial\bar z}=0$
Above functions can be written in terms of $z$ using $z=x+iy$, $\bar z=x-iy$, $x=\frac{z+\bar z}{2}$ and $y=\frac{z-\bar z}{2i}$
\begin{align*}
&(3+x-iy)^7=(3+\bar z)^7\\
&(1+x+iy)^4(7-x-iy)^4\\
&=(1+z)^4(7-z)^3\\
&(1-2x-iy)^4(3-x-iy)^3\\
&=\left(1-2\frac{z+\bar z}{2}-i\frac{z-\bar z}{2i}\right)^4(3-z)^3\\
&=\left(1-2z-\frac{\bar z}{2}\right)^4(3-z)^3\\
&(x+iy-1)^{1/2}=(z-1)^{1/2}
\end{align*}
For the functions which contain $\bar z$, $\frac{\partial f(z)}{\partial\bar z}\neq0$. Hence, the functions in the options (A) and (C) are not analytical.
For the functions which are functions of only $z$ have $\frac{\partial f(z)}{\partial\bar z}=0$. Hence, we have option either
(B) or (C).
The option (B) i.e. $f(z)=(1+z)^4(7-z)^3$ is a polynomial in $z$ and polynomial in $z$ is analytic everywhere.
For the option (C) i.e. $f(z)=(z-1)^{1/2}$, $f'(z)=\frac{1}{2\sqrt{z-1}}$ and this function is analytic only for $|z|<1$. Our domain is $|z|<2$. Hence, it not analytical over the domain $|z|<2$.
Hence, the correct option is (B).
Consider the matrix $M=\begin{pmatrix}1&1&1\\1&1&1\\1&1&1\end{pmatrix}$
The eigenvalues of $M$ are
0, 1, 2
0, 0, 3
1, 1, 1
-1, 1, 3
The exponential of M simplifies to ($I$ is the $3\times3$ identity matrix)
A $2\times2$ matrix $A$ has eigenvalues $e^{i\pi/5}$ and $e^{i\pi/6}$. The smallest value of $n$ such that $A^n = I$ is
20
30
60
120
As $e^{i\pi/5}$ and $e^{i\pi/6}$ are eigenvalues of matrix $A$, eigenvalues of matrix of matrix $A^n$ will be
$e^{in\pi/5}$ and $e^{in\pi/6}$. However, $A^n$ is identity matrix whose eignevalues will be 1 and 1, the diagonal elements.
Hence, $e^{in\pi/5}=1$ and $e^{ni\pi/6}=1$
$$e^{in\pi/5}=\cos{(n\pi/5)}+i\sin{(n\pi/5)}=1$$
$$\Rightarrow \cos{(n\pi/5)}=1 \text{ and } sin{(n\pi/5)}=0$$
Hence, $n\pi/5=2m\pi$, where $m=0,1,2,\dots$, hence, $n=10m$, where $m=0,1,2,\dots$
Hence, $n=0, 10,20, 30,40,50,60\dots$
$$e^{in\pi/6}=\cos{(n\pi/6)}+i\sin{(n\pi/6)}=1$$
$$\Rightarrow \cos{(n\pi/6)}=1 \text{ and } sin{(n\pi/6)}=0$$
Hence, $n\pi/6=2m\pi$, where $m=0,1,2,\dots$, hence, $n=12m$, where $m=0,1,2,\dots$
Hence, $n=0, 12,24, 36,48,60,72\dots$
The common minimum value of $n$ is 60. Hence, answer is (C)
The unit normal vector at the point $\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)$ on the surface of the ellipsoid $\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
The unit normal is defined as $\hat n=\frac{\nabla f}{|\nabla f|}$
$$\nabla f=2\left(\frac{x}{a^2}\hat i+\frac{y}{b^2}\hat j+\frac{z}{c^2}\hat k\right)$$
\begin{align*}
&\left(\nabla f\right)_{\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)}\\
&=\frac{2}{\sqrt{3}}\left(\frac{\hat i}{a^2}+\frac{\hat j}{b^2}+\frac{\hat k}{c^2}\right)
\end{align*}
\begin{align*}
&\left(|\nabla f|\right)_{\left(\frac{a}{\sqrt{3}},\frac{b}{\sqrt{3}},\frac{c}{\sqrt{3}}\right)}\\
&=\frac{2}{\sqrt{3}}\sqrt{\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\\
&=\frac{2}{\sqrt{3}}\sqrt{\left(\frac{b^2c^2+a^2c^2+b^2a^2}{a^2b^2c^2}\right)}
\end{align*}
$$\frac{\nabla f}{|\nabla f|}=\frac{bc\:\hat i+ac\:\hat j+ab\:\hat k}{\sqrt{b^2c^2+a^2c^2+b^2a^2}}$$
The Taylor expansion of the function $\ln{(\cosh x)}$, where $x$ is real, about the point $x= 0$ starts with the following terms:
$-\frac{1}{2}x^2+\frac{1}{12}x^4+\cdots$
$\frac{1}{2}x^2-\frac{1}{12}x^4+\cdots$
$-\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
$\frac{1}{2}x^2+\frac{1}{6}x^4+\cdots$
We will require following identities:
$$\sinh{x}=\frac{e^x-e^{-x}}{2}$$
$$\cosh{x}=\frac{e^x+e^{-x}}{2}$$
$$\tanh{x}=\frac{\sinh{x}}{\cosh{x}}$$
$$\frac{d}{dx}\sinh{x}=\cosh{x}$$
$$\frac{d}{dx}\cosh{x}=\sinh{x}$$
$$\frac{d}{dx}\tanh{x}=\text{sech }^2{x}$$
$$\frac{d}{dx}\text{sech }{x}=-\text{sech }{x}\tanh{x}$$
Taylor series of $f(x)$ about $x=0$ is given by
\begin{align*}
f(x)&=f(x)+\frac{1}{1!}f'(0)x+\frac{1}{2!}f''(0)x^2\\
&+\frac{1}{3!}f'''(0)x^3+\frac{1}{4!}f''''(0)x^4+..
\end{align*}
\begin{align*}
&f(x)=\ln{(\cosh{x})}\\
&\Rightarrow f(0)=0\\
&f'(x)=\tanh{x} \\
&\Rightarrow f'(0)=0\\
&f''(x)=\text{sech }^2{x}=1-\tanh^2{x}\\
&\Rightarrow f''(0)=1\\
&f'''(x)=-2\text{sech }^2{x}\tanh{x}\\
&\Rightarrow f'''(0)=0\\
f''''(x)&=4\text{sech }^2{x}\tanh^2{x}-2\text{sech }^4{x} \\
&\Rightarrow f''''(0)=-2
\end{align*}
$$f(x)=\frac{1}{2!}x^2-\frac{1}{12}x^4+\cdots$$
Hence, answer is (B)
The value of the integral $\int_C \frac{z^3dz}{z^2-5z+6}$, where $C$ is a closed contour defined by the equation $2|z|- 5 = 0$, traversed in the anti-clockwise direction, is
$-16\pi i$
$16\pi i$
$8\pi i$
$2\pi i$
\begin{align*}
&\int_C\frac{z^3dz}{z^2-5z+6} \quad C:|z|=\frac{5}{2}=2.5\\
&= \int_C\frac{z^3dz}{(z-2)(z-3)}\\
&= \int_C\frac{\frac{z^3}{(z-3)}}{(z-2)}dz
\end{align*}
The function has a pole of order 1 at $z=2$ which lies inside $C$. According to residue theorem
\begin{align*}
&\oint\limits_Cf(z)dz\\
&=2\pi i\times&\text{sum of residues at}\\
&&\text{ poles inside }C
\end{align*}
In general the residue at a pole of order $m$ at $z=z_0$ is
\begin{eqnarray}
\begin{array}{c}R=\frac{1}{(m-1)!}\lim\limits_{z\to z_0}\left\{\frac{d^{m-1}\left((z-z_0)^mf(z)\right)}{dz^{m-1}}\right\}_{z=z_0}\end{array}
\end{eqnarray}
For simple pole of order 1
$$R=\lim\limits_{z\to z_0}\left\{(z-z_0)f(z_0)\right\}$$
$$R=\lim\limits_{z\to 2}\left\{(z-2)\frac{\frac{z^3}{(z-3)}}{(z-2)}\right\}=-8$$
$$\oint_Cf(z)dz=2\pi i\times(-8)=-16\pi i$$
Hence, answer is (A)
The function $f(x)$ obeys the differential equation $\frac{d^2f}{dx^2}-(3 - 2i)f = 0$ and satisfies the conditions $f(0) = 1$ and $f(x)\rightarrow \infty$ as $x\rightarrow 0$. The value of $f(\pi)$ is
The Fourier transform of $f(x)$ is $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$. If
$f(x)=\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)$, where $\delta(x)$ is the Dirac delta-function
(and prime denotes derivative), what is $\tilde{f}(k)$?
$\alpha+i\beta k+i\gamma k^2$
$\alpha+\beta k-\gamma k^2$
$\alpha-i\beta k-\gamma k^2$
$i\alpha+\beta k-i\gamma k^2$
For Dirac delta function, we have,
$$\int\limits f(x)\delta(x-y)\:dx=f(y)$$
$$\int\limits f(x)\delta'(x-y)\:dx=-f'(y)$$
$$\int\limits f(x)\delta''(x-y)\:dx=(-1)^2f''(y)$$
$$\int\limits f(x)\delta^n(x-y)\:dx=(-1)^nf^n(y)$$
\begin{align*}
\tilde{f}(k)&={\scriptstyle\int\limits_{-\infty}^{\infty}dx\:e^{ikx}\left(\alpha\delta(x)+\beta\delta'(x)+\gamma\delta''(x)\right)}\\
&=\alpha f(0)+\beta(-f'(0))+\gamma f''(0)\\
&=\alpha-i\beta k-\gamma k^2
\end{align*}
Hence, answer is (C)
The solution of the differential equation $\frac{dx}{dt}=2\sqrt{1-x^2}$, with initial condition $x=0$ at $t=0$ is
$$\int\frac{dx}{\sqrt{1-x^2}}=2\int dt$$
Let us make substitution $x=\sin\theta$, $dx=\cos\theta$
$$\int d\theta=2t+c_1$$
$$\theta=2t+c_1$$
$$\sin^{-1}x=c_1+2t$$
$$x=c+\sin{2t}$$
At $t=0$, $x=0$, hence, $c=0$
$$x=\sin{2t}$$
However, maximum value of $\sin(2t)$ is 1
$$\sin{2t}=1\quad \text{when } 2t=\frac{\pi}{2}\quad\text{ or }t=\frac{\pi}{4}$$
Hence,
\begin{align*}
x=\begin{cases}
\sin{2t},\quad 0\leq t<\frac{\pi}{2}\\
1,\quad t\geq\frac{\pi}{2}
\end{cases}
\end{align*}
Hence, answer is (B).
Linearly independent solution of the differential equation
$$\frac{d^2y}{dx^2}+3\frac{dy}{dx}+2y=0$$ are:
$e^{-x}$, $e^{-2x}$
$e^{-x}$, $e^{2x}$
$e^{-2x}$, $e^{x}$
$e^{2x}$, $e^{x}$
Auxiliary equation is
$$D^2+3D+2=0$$
$$(D+1)(D+2)=0$$
Hence, roots are $-1$ and $-2$
solutions are $e^{-x}$, $e^{-2x}$
Hence, answer is (A)
The Hermite polynomial $H_n(x)$ satisfies the differential equation $$\frac{d^2H_n}{dx^2}-2x\frac{dH_n}{dx}+2nH_n(x)=0$$
.
The corresponding generating function $G(x,t)=\sum\limits_{n=0}^{\infty}\frac{1}{n!}H_n(x)t^n$ satisfies the
The trace of $3\times3$ matrix is 2. Two of its eigenvalues are 1 and 2. The third eigenvalue is
-1
0
1
2
The trace of a matrix is the sum of the eigenvalues. Hence, $1+2+x=2$, hence $x=-1$
Hence, answer is (A)
A linear transformation $T$, defined as $T\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}x_1+x_2\\x_2-x_3\end{pmatrix}$, transforms a vector $\vec x$ from a three-dimensional real space to a two-dimensional real space. The transformation matrix $T$ is
The value of $\oint\limits_C\frac{e^{2z}}{(z+1)^4}dz$, where $C$ is circle defined by $|z|=3$, is
$\frac{8\pi i}{3}e^{-2}$
$\frac{8\pi i}{3}e^{-1}$
$\frac{8\pi i}{3}e$
$\frac{8\pi i}{3}e^{2}$
Inside circle $|z|=3$, $z=-1$ is a pole of order 4.
\begin{align*}
&\oint\limits_Cf(z)dz\\
&=2\pi i\times&\text{sum of residues at}\\
&&\text{ poles inside }C
\end{align*}
In general the residue at a pole of order $m$ at $z=z_0$ is
\begin{eqnarray}
\begin{array}{c}R=\frac{1}{(m-1)!}\lim\limits_{z\to z_0}\left\{\frac{d^{m-1}\left((z-z_0)^mf(z)\right)}{dz^{m-1}}\right\}_{\!z=z_0}\end{array}
\end{eqnarray}
$$R=\frac{1}{3!}\lim\limits_{z\to -1}\left\{\frac{d^3\left((z+1)^4e^{2z}\right)}{dz^3}\right\}$$
$$R=\frac{8}{6}e^{-2}$$
$$\oint_Cf(z)dz=2\pi i\times\frac{8}{6}e^{-2}=\frac{8\pi i}{3}e^{-2} $$
Hence, answer is (A)
Consider the differential equation $\frac{d^2x}{dt^2}-3\frac{dx}{dt}+2x=0$. If $x=0$ at $t=0$ and $x=1$ at $t=1$, the value of $x$ at $t=2$ is
$e^2+1$
$e^2+e$
$e+2$
$2e$
Characteristic equation is $$m^2-3m+2=0$$
$$\Rightarrow (m-1)(m-2)=0$$
$$\Rightarrow m=1,2$$
Hence solution is
$$x=c_1e^{t}+c_2e^{2t}$$
$x=0$ at $t=0$ $\Rightarrow c_1=-c_2$
and $x=1$ at $t=1$ $\Rightarrow c_1e+c_2e^{2}=1$
$$\Rightarrow c_1=\frac{1}{e-e^2}$$
$$ c_2=-\frac{1}{e-e^2}$$
At $t=2$
\begin{align*}
x&=c_1e^{2}+c_2e^{4}\\
&=\frac{e^{2}}{e-e^2}-\frac{e^{4}}{e-e^2}\\
&=e+e^2
\end{align*}
Hence, answer is (B)
The rank-2 tensor $x_ix_j$, where $x_i$ are the Cartesian coordinates of the position vector in three dimensions, has 6 independent elements. Under rotation, these 6 elements decompose into irreducible sets (that is, the elements of each set transform only into linear combinations of elements in that set) containing
4 and 2 elements
5 and 1 elements
3, 2 and 1 elements
4, 1 and 1 elements
The rank-2 tensor $T_{ij}=x_ix_j$ can be decomposed into into irreducible representations in the following way
$$T_{ij}=T_{ij}^{(0)}+T_{ij}^{(1)}+T_{ij}^{(2)}$$
where,
$T_{ij}^{(0)}$ is a tensor of rank 0 and has 1 independent component only.
$T_{ij}^{(1)}$ is a tensor of rank 1 and has 3 independent components.
$T_{ij}^{(2)}$ is a tensor of rank 2 and has 5 independent components.
Hence, answer is (B)
Consider the differential equation $\frac{dy}{dx}=x^2-y$ with initial condition $y=2$ at $x=0$. Let $y_{(1)}$ and $y_{(1/2)}$ be the solutions at $x=1$ obtained using Euler's forward algorithm with step size 1 and $\frac{1}{2}$ respectively. The value of $\left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)}$ is
$-1/2$
$-1$
$1/2$
1
Euler's forward formula is
$$y_{n+1}=y_n+hf(x_n,y_n)$$
where, $f(x,y)=x^2-y$.
\begin{align*}
y_{1}&=y_0+f(x_0,y_0)\\
&=2+f(0,2)\\
&=0
\end{align*}
\begin{align*}
y_{1/2}&=y_0+\frac{1}{2}f(x_0,y_0)\\
&=2+\frac{1}{2}f(0,2)\\
&=1
\end{align*}
$$\left(y_{(1)}-y_{(1/2)}\right)/y_{(1/2)}=-1$$
Hence, answer is (B)
A rod of length $L$ carries a total charge $Q$ distributed uniformly. If this is observed in a frame moving with a speed $v$ along the rod, the change per unit length (as measured by the moving observer) is
$\frac{Q}{L}\left(1-\frac{v^2}{c^2}\right)$
$\frac{Q}{L}\sqrt{1-\frac{v^2}{c^2}}$
$\frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}$
$\frac{Q}{L\left(1-\frac{v^2}{c^2}\right)}$
Length contraction is given by
$$L'=L \sqrt{1-\frac{v^2}{c^2}}$$
Hence, charge per unit length is given by
$$\frac{Q}{L\sqrt{1-\frac{v^2}{c^2}}}$$
Hence, answer is (C)
One of the eigen values of the matrix $\begin{pmatrix}2&3&0\\3&2&0\\0&0&1\end{pmatrix}$ is 5
The other two eigenvalues are
0 and 0
1 and 1
1 and -1
-1 and -1
The normalized eigenvector corresponding to the eigenvalue 5 is
Let $\lambda_1$ and $\lambda_2$ be other eigenvalues
$$Det=5\times\lambda_1\times\lambda_2=-5$$
$$\lambda_1\times\lambda_2=-1\quad---(1)$$
Trace of matrix=sum of eigenvalues
$$5+\lambda_1+\lambda_2=5$$
$$\lambda_1+\lambda_2=0\quad---(2)$$
Solving equation (1) and (2) we get
$$\lambda_1=1\quad\lambda_2=-1$$
Hence, answer is (C)
Eigenvalue equation for $\lambda=5$ is $A-\lambda=0$
$$\begin{pmatrix}-3&3&0\\3&-3&0\\0&0&-4\end{pmatrix}\!\begin{pmatrix}x\\y\\z\end{pmatrix}\!=\!\begin{pmatrix}0\\0\\0\end{pmatrix}$$
$$-3x+3y=0$$
$$3x-3y=0$$
$$-4z=0$$
$$\Rightarrow z=0, x=y=c$$
Applying normalization condition
$$|c|^2+|c|^2+0=1$$
$$\Rightarrow c=\frac{1}{\sqrt{2}}$$
$$\begin{pmatrix}x\\y\\z\end{pmatrix}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\\0\end{pmatrix}$$
Hence, answer is (d)
The Gauss hypergeometric function $F(a,b,c;z)$, defined by the Taylor series expansion around $z=0$ as
$${\textstyle F(a,b,c;z)=\sum\limits_{n=0}^\infty\frac{a(a+1)\cdots(a+n-1)b(b+1)\cdots(b+n-1)}{c(c+1)\cdots(c+n-1)n!}z^n}$$
satisfies the recursion relation
Let $(x,y)$ and $(x',y')$ be the coordinate systems used by the observers $O$ and $O'$, respectively. Observer moves with a velocity $v= \beta c$ along their common positive $x$-axis. If $x_+=x+ct$ and $x_-=x-ct$ are the linear combinations of the coordinates, the Lorentz transformation relating $O$ and $O'$ takes the form
$x_+'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$
$x_+'=\sqrt{\frac{1+\beta}{1-\beta}}x_+$ and $x_-'=\sqrt{\frac{1-\beta}{1+\beta}}x_-$
$x_+'=\frac{x_+-\beta x_-}{\sqrt{1-\beta^2}}$ and $x_-'=\frac{x_--\beta x_+}{\sqrt{1-\beta^2}}$
$x_+'=\sqrt{\frac{1-\beta}{1+\beta}}x_+$ and $x_-'=\sqrt{\frac{1+\beta}{1-\beta}}x_-$
In finding the roots of the polynomial $f(x)=3x^3-4x-5$ using the iterative Newton-Raphson method, the initial guess is taken to be $x=2$. In the next iteration its value is nearest to
1.671
1.656
1.559
1.551
Newton-Raphson formula is
\begin{align*}
x_1&=x_0-\frac{f(x_0)}{f'(x_0)}\\
&=2-\frac{3\times2^3-4\times2-5}{9\times2^2-4}\\
&=1.65625
\end{align*}
Hence, answer is (B)
For a particle of energy $E$ and $P$ momentum (in a frame $F$), the rapidity $y$ is defined as $y=\frac{1}{2}\ln{\left(\frac{E+p_3c}{E-p_3c}\right)}$. In a frame $F'$ moving with velocity $v=(0,0,\beta c)$ with respect to $F$, the rapidity $y'$ will be
A function $f(x)$ satisfies the differential equation $\frac{d^2f}{dx^2}-\omega^2f=-\delta(x-a)$, where $\omega$ is positive. The Fourier transform $\tilde{f}(k)=\int_{-\infty}^{\infty}dx\:e^{ikx}f(x)$ of $f$, and the solution of the equation are, respectively,
$\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}\left(e^{-\omega|x-a|}+e^{\omega|x-a|}\right)$
$\frac{e^{ika}}{k^2+\omega^2}$ and $\frac{1}{2\omega}e^{-\omega|x-a|}$
$\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2\omega}\left(e^{-i\omega|x-a|}+e^{i\omega|x-a|}\right)$
$\frac{e^{ika}}{k^2-\omega^2}$ and $\frac{1}{2i\omega}\left(e^{-i\omega|x-a|}-e^{i\omega|x-a|}\right)$
Eigenvalues of the matrix $\begin{bmatrix}1&-1\\1&1\end{bmatrix}$
1, -1
-1, $-i$
$i$, $-i$
$1+i$, $1-i$
Determinant of matrix is equal to product of eigenvalues.
$$\begin{vmatrix}1&-1\\1&1\end{vmatrix}=2$$
Clearly
$$(1+i)(1-i)=2$$
Hence, answer is (D)
Particular integral of first order linear differential $\frac{dy}{dx}=x+y$ is given by:
$y(x)=-x-1$
$y(x)=x+1$
$y(x)=x-1$
$y(x)=-x+1$
Linear differential equation is given by
$$\frac{dy}{dx}+P(x)y=Q(x)$$
Multiply both sides by the Integrating Factor $e^{\int P(x)dx}$
$${\scriptstyle \frac{dy}{dx}e^{\int P(x)dx}+P(x)ye^{\int P(x)dx}=Q(x)e^{\int P(x)dx}}$$
$$\frac{d\left(ye^{\int P(x)dx}\right)}{dx}=Q(x)e^{\int P(x)dx}$$
On integrating we get
$$ye^{\int P(x)dx}=\int Q(x)e^{\int P(x)dx}dx+c$$
$$\frac{dy}{dx}-y=x$$
$P(x)=-1$, $Q(x)=x$
$$ye^{-\int dx}=\int xe^{-\int dx}dx+c$$
$$ye^{-x}=\int xe^{-x}dx+c$$
Integrating by parts
$$ye^{-x}=-xe^{-x}+\int e^{-x}dx+c$$
$$ye^{-x}=-xe^{-x}-e^{-x}+c$$
$$y=-x-1$$
Hence, answer is (A)
The Fourier transform of a Gaussian function is of the form:
Exponential
Lorentzian
Gaussian
Screened coulomb
Hence, answer is (C)
The real part of $\log{(3+4i)}$ is :
$\log2$
$\log3$
$\log4$
$\log5$
Let $z=x+iy$, $r=\sqrt{x^2+y^2}$, $\theta=\tan^{-1}{\frac{y}{x}}$ and $z=re^{i\theta}$
For $z=3+4i$, $r=\sqrt{3^2+16^2}=5$, $\theta=\tan^{-1}{\frac{4}{3}}=0.92729$ and $z=5e^{i0.92729}$
\begin{align*}
\log{(3+4i)}&=\log{5e^{i0.92729}}\\
&=\log5+i0.92729
\end{align*}
Hence, answer is (D)
Consider three vectors $\vec a=\hat i+\hat j+\hat k$, $\vec b=\hat i-\hat j+\hat k$ and $\vec c=\hat i-\hat j-\hat k$. Which of the following statement is true?
$\vec a$, $\vec b$, $\vec c$ are linearly independent
$\vec a$, $\vec b$ are linearly independent
$\vec b$ and $\vec c$ are right angle to each other
$\vec a$ and $\vec c$ are parallel
The vectors in a subset $S = \{ \vec v_1 ,\vec v_2 ,\cdots,\vec v_n \}$ of a vector space $V$ are said to be linearly dependent, if there exist a finite number of distinct vectors $ \vec {v}_{1},\vec {v}_{2},\dots ,\vec {v}_{k}$ in $S$ and scalars $a_{1},a_{2},\dots ,a_{k}$, not all zero, such that
$$a_{1}\vec {v}_{1}+a_{2}\vec {v}_{2}+\cdots +a_{k}\vec {v}_{k}=\vec {0}$$
where zero denotes the zero vector.
Let
$$a_1\vec a+a_2\vec b+a_3\vec c=0$$
$$\begin{bmatrix}1&1&1\\1&-1&-1\\1&1&-1\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$
If $\vec a$, $\vec b$ and $\vec c$ are linearly independent, then the only solution to this system of equations is the trivial solution, $a_1=a_2=a_3=0$. For homogeneous systems this happens precisely when the determinant is non-zero. If determinant is zero then vectors are linearly dependent.
$$\begin{vmatrix}1&1&1\\1&-1&-1\\1&1&-1\end{vmatrix}=4$$
Hence, $\vec a$, $\vec b$ and $\vec c$ are linearly independent.
please provide june 2017 csir question paper solution
ReplyDelete