- Calculate equivalent temperature of 1eV energy
- What are unit and dimensions of wavefunction $\psi$
- The typical wavelengths emitted by diatomic molecules in purely vibrational and purely rotational transitions are respectively in the region of
- infrared and visible
- visible and infrared
- infrared and microwaves
- microwaaves and infrared
- Solar cell is a type of :
- Photo-conductive device
- Photo-emissive device
- Photo-voltaic device
- Electromagnetic device
- KCL and KBr are alkali halides, both having the NaCl crystal structure. However, in the X-ray diffraction certain reflections are absent for KCl as compared to KBr, for example (111), (311), (331). The difference in the two similar geometrical structures is because of the following:
- Atomic form factors of K and Cl are similar, but of K and Br are very different
- Atomic form factors of K and Cl are different, but of K and Br are similar
- The structure factors of KCl and KBr are different
- Structure factors of KCl and KBr are different and the form factors of K and Br are also similar.
- For any process, the second law of thermodynamics requires that the change of entropy of the universe be
- Positive only
- Positive or zero
- Zero only
- Negative or zero
Enhance a problem solving ability in Physics for various competitive and qualifying examinations like GRE, GATE, CSIR JRF-NET, SET, UPSC etc.
Notice
Friday, 30 September 2016
Problem set 3
Wednesday, 28 September 2016
Problem set 2
- What would be the approximate length of the day if the earth spun so fast that bodies floated on the equator? Take the radius of the earth $R=6\times 10^6 m$ and $g=9.8 m/s^2$
- 12 hours
- 6 hours
- 3 hours
- 1.5 hour
- The real matrix $A=\begin{pmatrix}a&-f&-g\\ f&a&h\\g&-h&a\end{pmatrix}$ is skew symmetric when
- $a=0$
- $f=0$
- $g=h$
- $f=g$ $
Matrix $A$ is skew symmetric when $A_{ij}=-A_{ji}$. Hence, $a=0$ - If $A$ and $B$ are matrices such that $AB=B$ and $BA=A$ then $A^2+B^2$ equals
- 2AB
- 2BA
- A+B
- AB
- The average value of function $f(x)=4x^3$ in the interval 1 to 3 is
- 15
- 20
- 30
- 40
Body remains on earth's surface because
$gravitational~ pull ~(body~weight)\geq centrifugal~ force $
Body will start floating when
$centrifugal~force > gravitational~pull~i.e. body~weight$
$$m\omega^2r>mg$$ or $$\omega>\sqrt{\frac{g}{r}}$$ But $$\omega=\frac{2\pi}{T}$$ $$T(in~ seconds)>2\pi\sqrt{\frac{r}{g}}$$
$$T(in~ hours)>2\pi\sqrt{\frac{r}{g}}\frac{1}{3600}=\frac{2\times3.14\times1000\times\sqrt{6}}{3600\times\sqrt{9.8}}=1.5~ hours$$
$gravitational~ pull ~(body~weight)\geq centrifugal~ force $
Body will start floating when
$centrifugal~force > gravitational~pull~i.e. body~weight$
$$m\omega^2r>mg$$ or $$\omega>\sqrt{\frac{g}{r}}$$ But $$\omega=\frac{2\pi}{T}$$ $$T(in~ seconds)>2\pi\sqrt{\frac{r}{g}}$$
$$T(in~ hours)>2\pi\sqrt{\frac{r}{g}}\frac{1}{3600}=\frac{2\times3.14\times1000\times\sqrt{6}}{3600\times\sqrt{9.8}}=1.5~ hours$$
\begin{align*}
A^2+B^2&=(BA)^2+(AB)^2\\
&=BABA+ABAB
\end{align*}
\begin{align*}
A^2+B^2&=B\underline{AB}A+A\underline{BA}B\\
&=B\underline{BA}+A\underline{AB}\\
&=BA+AB=A+B
\end{align*}
\begin{align*}
<f(x)>&=\frac{\int_1^3f(x)dx}{\int_1^3dx}\\
&=\frac{\int_1^34^3dx}{\int_1^3dx}\\
&=\frac{[x^4]_1^3}{[x]_1^3}\\
&=\frac{81-1}{3-1}=40
\end{align*}
Problem set 1
Wave function of a particle moving in free space is given by, $\psi=e^{ikx}+2e^{-ikx}$. Find the energy of the particle.
one dimensional Schrödinger equation is $-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V\psi=E\psi$
For a free particle $V=0$
$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi$
$\frac{d^2\psi}{dx^2}=-k^2\left(e^{ikx}+2e^{-ikx}\right)=-k^2\psi$
$E=\frac{\hbar^2k^2}{2m}$
For a free particle $V=0$
$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi$
$\frac{d^2\psi}{dx^2}=-k^2\left(e^{ikx}+2e^{-ikx}\right)=-k^2\psi$
$E=\frac{\hbar^2k^2}{2m}$
Subscribe to:
Posts
(
Atom
)